### 3.70 $$\int \frac{x^2 (d+e x^2+f x^4)}{(a+b x^2+c x^4)^2} \, dx$$

Optimal. Leaf size=362 $-\frac{x \left (x^2 \left (-2 a c f+b^2 f-b c e+2 c^2 d\right )+a b f-2 a c e+b c d\right )}{2 c \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (\frac{-4 b c (2 a f+c d)+4 a c^2 e+b^2 c e+b^3 f}{c \sqrt{b^2-4 a c}}+6 a f-\frac{b^2 f}{c}-b e+2 c d\right )}{2 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (-\frac{-4 b c (2 a f+c d)+4 a c^2 e+b^2 c e+b^3 f}{c \sqrt{b^2-4 a c}}+6 a f-\frac{b^2 f}{c}-b e+2 c d\right )}{2 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right ) \sqrt{\sqrt{b^2-4 a c}+b}}$

[Out]

-(x*(b*c*d - 2*a*c*e + a*b*f + (2*c^2*d - b*c*e + b^2*f - 2*a*c*f)*x^2))/(2*c*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4
)) - ((2*c*d - b*e + 6*a*f - (b^2*f)/c + (b^2*c*e + 4*a*c^2*e + b^3*f - 4*b*c*(c*d + 2*a*f))/(c*Sqrt[b^2 - 4*a
*c]))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*Sqrt[c]*(b^2 - 4*a*c)*Sqrt[b - Sqrt[
b^2 - 4*a*c]]) - ((2*c*d - b*e + 6*a*f - (b^2*f)/c - (b^2*c*e + 4*a*c^2*e + b^3*f - 4*b*c*(c*d + 2*a*f))/(c*Sq
rt[b^2 - 4*a*c]))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*Sqrt[c]*(b^2 - 4*a*c)*Sq
rt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 2.49751, antiderivative size = 362, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 30, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.1, Rules used = {1668, 1166, 205} $-\frac{x \left (x^2 \left (-2 a c f+b^2 f-b c e+2 c^2 d\right )+a b f-2 a c e+b c d\right )}{2 c \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (\frac{-4 b c (2 a f+c d)+4 a c^2 e+b^2 c e+b^3 f}{c \sqrt{b^2-4 a c}}+6 a f-\frac{b^2 f}{c}-b e+2 c d\right )}{2 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (-\frac{-4 b c (2 a f+c d)+4 a c^2 e+b^2 c e+b^3 f}{c \sqrt{b^2-4 a c}}+6 a f-\frac{b^2 f}{c}-b e+2 c d\right )}{2 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right ) \sqrt{\sqrt{b^2-4 a c}+b}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(x^2*(d + e*x^2 + f*x^4))/(a + b*x^2 + c*x^4)^2,x]

[Out]

-(x*(b*c*d - 2*a*c*e + a*b*f + (2*c^2*d - b*c*e + b^2*f - 2*a*c*f)*x^2))/(2*c*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4
)) - ((2*c*d - b*e + 6*a*f - (b^2*f)/c + (b^2*c*e + 4*a*c^2*e + b^3*f - 4*b*c*(c*d + 2*a*f))/(c*Sqrt[b^2 - 4*a
*c]))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*Sqrt[c]*(b^2 - 4*a*c)*Sqrt[b - Sqrt[
b^2 - 4*a*c]]) - ((2*c*d - b*e + 6*a*f - (b^2*f)/c - (b^2*c*e + 4*a*c^2*e + b^3*f - 4*b*c*(c*d + 2*a*f))/(c*Sq
rt[b^2 - 4*a*c]))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*Sqrt[c]*(b^2 - 4*a*c)*Sq
rt[b + Sqrt[b^2 - 4*a*c]])

Rule 1668

Int[(Pq_)*(x_)^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{d = Coeff[PolynomialRemainde
r[x^m*Pq, a + b*x^2 + c*x^4, x], x, 0], e = Coeff[PolynomialRemainder[x^m*Pq, a + b*x^2 + c*x^4, x], x, 2]}, S
imp[(x*(a + b*x^2 + c*x^4)^(p + 1)*(a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2))/(2*a*(p + 1)*(b^2 - 4*a*c)
), x] + Dist[1/(2*a*(p + 1)*(b^2 - 4*a*c)), Int[(a + b*x^2 + c*x^4)^(p + 1)*ExpandToSum[2*a*(p + 1)*(b^2 - 4*a
*c)*PolynomialQuotient[x^m*Pq, a + b*x^2 + c*x^4, x] + b^2*d*(2*p + 3) - 2*a*c*d*(4*p + 5) - a*b*e + c*(4*p +
7)*(b*d - 2*a*e)*x^2, x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x^2] && GtQ[Expon[Pq, x^2], 1] && NeQ[b^
2 - 4*a*c, 0] && LtQ[p, -1] && IGtQ[m/2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^2 \left (d+e x^2+f x^4\right )}{\left (a+b x^2+c x^4\right )^2} \, dx &=-\frac{x \left (b c d-2 a c e+a b f+\left (2 c^2 d-b c e+b^2 f-2 a c f\right ) x^2\right )}{2 c \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\int \frac{-\frac{a (b c d-2 a c e+a b f)}{c}+a \left (2 c d-b e+6 a f-\frac{b^2 f}{c}\right ) x^2}{a+b x^2+c x^4} \, dx}{2 a \left (b^2-4 a c\right )}\\ &=-\frac{x \left (b c d-2 a c e+a b f+\left (2 c^2 d-b c e+b^2 f-2 a c f\right ) x^2\right )}{2 c \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\left (2 c d-b e+6 a f-\frac{b^2 f}{c}-\frac{b^2 c e+4 a c^2 e+b^3 f-4 b c (c d+2 a f)}{c \sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{4 \left (b^2-4 a c\right )}-\frac{\left (2 c d-b e+6 a f-\frac{b^2 f}{c}+\frac{b^2 c e+4 a c^2 e+b^3 f-4 b c (c d+2 a f)}{c \sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{4 \left (b^2-4 a c\right )}\\ &=-\frac{x \left (b c d-2 a c e+a b f+\left (2 c^2 d-b c e+b^2 f-2 a c f\right ) x^2\right )}{2 c \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\left (2 c d-b e+6 a f-\frac{b^2 f}{c}+\frac{b^2 c e+4 a c^2 e+b^3 f-4 b c (c d+2 a f)}{c \sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\left (2 c d-b e+6 a f-\frac{b^2 f}{c}-\frac{b^2 c e+4 a c^2 e+b^3 f-4 b c (c d+2 a f)}{c \sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right ) \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 1.23456, size = 414, normalized size = 1.14 $\frac{-\frac{2 \sqrt{c} x \left (a b f-2 a c \left (e+f x^2\right )+b^2 f x^2+b c \left (d-e x^2\right )+2 c^2 d x^2\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (b c \left (e \sqrt{b^2-4 a c}+8 a f+4 c d\right )-2 c \left (c d \sqrt{b^2-4 a c}+3 a f \sqrt{b^2-4 a c}+2 a c e\right )+b^2 \left (f \sqrt{b^2-4 a c}-c e\right )+b^3 (-f)\right )}{\left (b^2-4 a c\right )^{3/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (b c \left (e \sqrt{b^2-4 a c}-8 a f-4 c d\right )-2 c \left (c d \sqrt{b^2-4 a c}+3 a f \sqrt{b^2-4 a c}-2 a c e\right )+b^2 \left (f \sqrt{b^2-4 a c}+c e\right )+b^3 f\right )}{\left (b^2-4 a c\right )^{3/2} \sqrt{\sqrt{b^2-4 a c}+b}}}{4 c^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(x^2*(d + e*x^2 + f*x^4))/(a + b*x^2 + c*x^4)^2,x]

[Out]

((-2*Sqrt[c]*x*(a*b*f + 2*c^2*d*x^2 + b^2*f*x^2 + b*c*(d - e*x^2) - 2*a*c*(e + f*x^2)))/((b^2 - 4*a*c)*(a + b*
x^2 + c*x^4)) + (Sqrt[2]*(-(b^3*f) + b*c*(4*c*d + Sqrt[b^2 - 4*a*c]*e + 8*a*f) + b^2*(-(c*e) + Sqrt[b^2 - 4*a*
c]*f) - 2*c*(c*Sqrt[b^2 - 4*a*c]*d + 2*a*c*e + 3*a*Sqrt[b^2 - 4*a*c]*f))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - S
qrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*(b^3*f + b*c*(-4*c*d + Sqrt[b
^2 - 4*a*c]*e - 8*a*f) + b^2*(c*e + Sqrt[b^2 - 4*a*c]*f) - 2*c*(c*Sqrt[b^2 - 4*a*c]*d - 2*a*c*e + 3*a*Sqrt[b^2
- 4*a*c]*f))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2
- 4*a*c]]))/(4*c^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.035, size = 1300, normalized size = 3.6 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(f*x^4+e*x^2+d)/(c*x^4+b*x^2+a)^2,x)

[Out]

(-1/2*(2*a*c*f-b^2*f+b*c*e-2*c^2*d)/(4*a*c-b^2)/c*x^3+1/2/c*(a*b*f-2*a*c*e+b*c*d)/(4*a*c-b^2)*x)/(c*x^4+b*x^2+
a)-3/2/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/
2))*a*f+1/4/(4*a*c-b^2)/c*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)
*c)^(1/2))*b^2*f+1/4/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(
1/2)-b)*c)^(1/2))*b*e-1/2/(4*a*c-b^2)*c*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c
+b^2)^(1/2)-b)*c)^(1/2))*d+2/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c
*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*a*b*f-1/(4*a*c-b^2)*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(
1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*a*e-1/4/(4*a*c-b^2)/c/(-4*a*c+b^2)^(1/2
)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^3*f-1/4/(4*
a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-
b)*c)^(1/2))*b^2*e+1/(4*a*c-b^2)*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(
1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b*d+3/2/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x
*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*f-1/4/(4*a*c-b^2)/c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arct
an(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2*f-1/4/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2
)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*e+1/2/(4*a*c-b^2)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c
)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*d+2/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-
4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*b*f-1/(4*a*c-b^2)*c/(-4*a*c+
b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*e-1
/4/(4*a*c-b^2)/c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^
2)^(1/2))*c)^(1/2))*b^3*f-1/4/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c
*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2*e+1/(4*a*c-b^2)*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)
^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{{\left (2 \, c^{2} d - b c e +{\left (b^{2} - 2 \, a c\right )} f\right )} x^{3} +{\left (b c d - 2 \, a c e + a b f\right )} x}{2 \,{\left ({\left (b^{2} c^{2} - 4 \, a c^{3}\right )} x^{4} + a b^{2} c - 4 \, a^{2} c^{2} +{\left (b^{3} c - 4 \, a b c^{2}\right )} x^{2}\right )}} - \frac{-\int \frac{b c d - 2 \, a c e + a b f -{\left (2 \, c^{2} d - b c e -{\left (b^{2} - 6 \, a c\right )} f\right )} x^{2}}{c x^{4} + b x^{2} + a}\,{d x}}{2 \,{\left (b^{2} c - 4 \, a c^{2}\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(f*x^4+e*x^2+d)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")

[Out]

-1/2*((2*c^2*d - b*c*e + (b^2 - 2*a*c)*f)*x^3 + (b*c*d - 2*a*c*e + a*b*f)*x)/((b^2*c^2 - 4*a*c^3)*x^4 + a*b^2*
c - 4*a^2*c^2 + (b^3*c - 4*a*b*c^2)*x^2) - 1/2*integrate(-(b*c*d - 2*a*c*e + a*b*f - (2*c^2*d - b*c*e - (b^2 -
6*a*c)*f)*x^2)/(c*x^4 + b*x^2 + a), x)/(b^2*c - 4*a*c^2)

________________________________________________________________________________________

Fricas [B]  time = 37.949, size = 18090, normalized size = 49.97 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(f*x^4+e*x^2+d)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")

[Out]

-1/4*(2*(2*c^2*d - b*c*e + (b^2 - 2*a*c)*f)*x^3 + sqrt(1/2)*((b^2*c^2 - 4*a*c^3)*x^4 + a*b^2*c - 4*a^2*c^2 + (
b^3*c - 4*a*b*c^2)*x^2)*sqrt(-((b^3*c^3 + 12*a*b*c^4)*d^2 - 4*(3*a*b^2*c^3 + 4*a^2*c^4)*d*e + (a*b^3*c^2 + 12*
a^2*b*c^3)*e^2 + (a*b^5 - 15*a^2*b^3*c + 60*a^3*b*c^2)*f^2 - 2*((3*a*b^3*c^2 - 28*a^2*b*c^3)*d - (a*b^4*c - 6*
a^2*b^2*c^2 - 24*a^3*c^3)*e)*f + (a*b^6*c^3 - 12*a^2*b^4*c^4 + 48*a^3*b^2*c^5 - 64*a^4*c^6)*sqrt((c^6*d^4 - 2*
a*c^5*d^2*e^2 + a^2*c^4*e^4 + (a^2*b^4 - 18*a^3*b^2*c + 81*a^4*c^2)*f^4 - 4*(3*(a^2*b^2*c^2 - 9*a^3*c^3)*d - (
a^2*b^3*c - 9*a^3*b*c^2)*e)*f^3 - 2*(12*a^2*b*c^3*d*e + (a*b^2*c^3 - 27*a^2*c^4)*d^2 - 3*(a^2*b^2*c^2 - 3*a^3*
c^3)*e^2)*f^2 + 4*(3*a*c^5*d^3 - a*b*c^4*d^2*e - 3*a^2*c^4*d*e^2 + a^2*b*c^3*e^3)*f)/(a^2*b^6*c^6 - 12*a^3*b^4
*c^7 + 48*a^4*b^2*c^8 - 64*a^5*c^9)))/(a*b^6*c^3 - 12*a^2*b^4*c^4 + 48*a^3*b^2*c^5 - 64*a^4*c^6))*log(((3*b^2*
c^5 + 4*a*c^6)*d^4 - (b^3*c^4 + 12*a*b*c^5)*d^3*e + (a*b^3*c^3 + 12*a^2*b*c^4)*d*e^3 - (3*a^2*b^2*c^3 + 4*a^3*
c^4)*e^4 + (5*a^3*b^4 - 81*a^4*b^2*c + 324*a^5*c^2)*f^4 + ((a*b^6 - 15*a^2*b^4*c + 432*a^4*c^3)*d - (3*a^2*b^5
- 65*a^3*b^3*c + 324*a^4*b*c^2)*e)*f^3 - 3*(3*(a*b^4*c^2 - 6*a^2*b^2*c^3 - 24*a^3*c^4)*d^2 - (a*b^5*c + 3*a^2
*b^3*c^2 - 108*a^3*b*c^3)*d*e + (3*a^2*b^4*c - 28*a^3*b^2*c^2)*e^2)*f^2 - ((b^4*c^3 - 24*a*b^2*c^4 - 48*a^2*c^
5)*d^3 + 9*(a*b^3*c^3 + 12*a^2*b*c^4)*d^2*e - 3*(a*b^4*c^2 + 12*a^2*b^2*c^3)*d*e^2 + (9*a^2*b^3*c^2 - 20*a^3*b
*c^3)*e^3)*f)*x + 1/2*sqrt(1/2)*((b^5*c^4 - 8*a*b^3*c^5 + 16*a^2*b*c^6)*d^3 - 2*(a*b^4*c^4 - 8*a^2*b^2*c^5 + 1
6*a^3*c^6)*d^2*e - (a*b^5*c^3 - 8*a^2*b^3*c^4 + 16*a^3*b*c^5)*d*e^2 + 2*(a^2*b^4*c^3 - 8*a^3*b^2*c^4 + 16*a^4*
c^5)*e^3 - (a^2*b^7 - 17*a^3*b^5*c + 88*a^4*b^3*c^2 - 144*a^5*b*c^3)*f^3 - ((a*b^7*c - 23*a^2*b^5*c^2 + 136*a^
3*b^3*c^3 - 240*a^4*b*c^4)*d + 18*(a^3*b^4*c^2 - 8*a^4*b^2*c^3 + 16*a^5*c^4)*e)*f^2 + (7*(a*b^5*c^3 - 8*a^2*b^
3*c^4 + 16*a^3*b*c^5)*d^2 - 2*(a*b^6*c^2 - 2*a^2*b^4*c^3 - 32*a^3*b^2*c^4 + 96*a^4*c^5)*d*e + 3*(a^2*b^5*c^2 -
8*a^3*b^3*c^3 + 16*a^4*b*c^4)*e^2)*f - ((a*b^8*c^4 - 8*a^2*b^6*c^5 + 128*a^4*b^2*c^7 - 256*a^5*c^8)*d - 4*(a^
2*b^7*c^4 - 12*a^3*b^5*c^5 + 48*a^4*b^3*c^6 - 64*a^5*b*c^7)*e - (a^2*b^8*c^3 - 24*a^3*b^6*c^4 + 192*a^4*b^4*c^
5 - 640*a^5*b^2*c^6 + 768*a^6*c^7)*f)*sqrt((c^6*d^4 - 2*a*c^5*d^2*e^2 + a^2*c^4*e^4 + (a^2*b^4 - 18*a^3*b^2*c
+ 81*a^4*c^2)*f^4 - 4*(3*(a^2*b^2*c^2 - 9*a^3*c^3)*d - (a^2*b^3*c - 9*a^3*b*c^2)*e)*f^3 - 2*(12*a^2*b*c^3*d*e
+ (a*b^2*c^3 - 27*a^2*c^4)*d^2 - 3*(a^2*b^2*c^2 - 3*a^3*c^3)*e^2)*f^2 + 4*(3*a*c^5*d^3 - a*b*c^4*d^2*e - 3*a^2
*c^4*d*e^2 + a^2*b*c^3*e^3)*f)/(a^2*b^6*c^6 - 12*a^3*b^4*c^7 + 48*a^4*b^2*c^8 - 64*a^5*c^9)))*sqrt(-((b^3*c^3
+ 12*a*b*c^4)*d^2 - 4*(3*a*b^2*c^3 + 4*a^2*c^4)*d*e + (a*b^3*c^2 + 12*a^2*b*c^3)*e^2 + (a*b^5 - 15*a^2*b^3*c +
60*a^3*b*c^2)*f^2 - 2*((3*a*b^3*c^2 - 28*a^2*b*c^3)*d - (a*b^4*c - 6*a^2*b^2*c^2 - 24*a^3*c^3)*e)*f + (a*b^6*
c^3 - 12*a^2*b^4*c^4 + 48*a^3*b^2*c^5 - 64*a^4*c^6)*sqrt((c^6*d^4 - 2*a*c^5*d^2*e^2 + a^2*c^4*e^4 + (a^2*b^4 -
18*a^3*b^2*c + 81*a^4*c^2)*f^4 - 4*(3*(a^2*b^2*c^2 - 9*a^3*c^3)*d - (a^2*b^3*c - 9*a^3*b*c^2)*e)*f^3 - 2*(12*
a^2*b*c^3*d*e + (a*b^2*c^3 - 27*a^2*c^4)*d^2 - 3*(a^2*b^2*c^2 - 3*a^3*c^3)*e^2)*f^2 + 4*(3*a*c^5*d^3 - a*b*c^4
*d^2*e - 3*a^2*c^4*d*e^2 + a^2*b*c^3*e^3)*f)/(a^2*b^6*c^6 - 12*a^3*b^4*c^7 + 48*a^4*b^2*c^8 - 64*a^5*c^9)))/(a
*b^6*c^3 - 12*a^2*b^4*c^4 + 48*a^3*b^2*c^5 - 64*a^4*c^6))) - sqrt(1/2)*((b^2*c^2 - 4*a*c^3)*x^4 + a*b^2*c - 4*
a^2*c^2 + (b^3*c - 4*a*b*c^2)*x^2)*sqrt(-((b^3*c^3 + 12*a*b*c^4)*d^2 - 4*(3*a*b^2*c^3 + 4*a^2*c^4)*d*e + (a*b^
3*c^2 + 12*a^2*b*c^3)*e^2 + (a*b^5 - 15*a^2*b^3*c + 60*a^3*b*c^2)*f^2 - 2*((3*a*b^3*c^2 - 28*a^2*b*c^3)*d - (a
*b^4*c - 6*a^2*b^2*c^2 - 24*a^3*c^3)*e)*f + (a*b^6*c^3 - 12*a^2*b^4*c^4 + 48*a^3*b^2*c^5 - 64*a^4*c^6)*sqrt((c
^6*d^4 - 2*a*c^5*d^2*e^2 + a^2*c^4*e^4 + (a^2*b^4 - 18*a^3*b^2*c + 81*a^4*c^2)*f^4 - 4*(3*(a^2*b^2*c^2 - 9*a^3
*c^3)*d - (a^2*b^3*c - 9*a^3*b*c^2)*e)*f^3 - 2*(12*a^2*b*c^3*d*e + (a*b^2*c^3 - 27*a^2*c^4)*d^2 - 3*(a^2*b^2*c
^2 - 3*a^3*c^3)*e^2)*f^2 + 4*(3*a*c^5*d^3 - a*b*c^4*d^2*e - 3*a^2*c^4*d*e^2 + a^2*b*c^3*e^3)*f)/(a^2*b^6*c^6 -
12*a^3*b^4*c^7 + 48*a^4*b^2*c^8 - 64*a^5*c^9)))/(a*b^6*c^3 - 12*a^2*b^4*c^4 + 48*a^3*b^2*c^5 - 64*a^4*c^6))*l
og(((3*b^2*c^5 + 4*a*c^6)*d^4 - (b^3*c^4 + 12*a*b*c^5)*d^3*e + (a*b^3*c^3 + 12*a^2*b*c^4)*d*e^3 - (3*a^2*b^2*c
^3 + 4*a^3*c^4)*e^4 + (5*a^3*b^4 - 81*a^4*b^2*c + 324*a^5*c^2)*f^4 + ((a*b^6 - 15*a^2*b^4*c + 432*a^4*c^3)*d -
(3*a^2*b^5 - 65*a^3*b^3*c + 324*a^4*b*c^2)*e)*f^3 - 3*(3*(a*b^4*c^2 - 6*a^2*b^2*c^3 - 24*a^3*c^4)*d^2 - (a*b^
5*c + 3*a^2*b^3*c^2 - 108*a^3*b*c^3)*d*e + (3*a^2*b^4*c - 28*a^3*b^2*c^2)*e^2)*f^2 - ((b^4*c^3 - 24*a*b^2*c^4
- 48*a^2*c^5)*d^3 + 9*(a*b^3*c^3 + 12*a^2*b*c^4)*d^2*e - 3*(a*b^4*c^2 + 12*a^2*b^2*c^3)*d*e^2 + (9*a^2*b^3*c^2
- 20*a^3*b*c^3)*e^3)*f)*x - 1/2*sqrt(1/2)*((b^5*c^4 - 8*a*b^3*c^5 + 16*a^2*b*c^6)*d^3 - 2*(a*b^4*c^4 - 8*a^2*
b^2*c^5 + 16*a^3*c^6)*d^2*e - (a*b^5*c^3 - 8*a^2*b^3*c^4 + 16*a^3*b*c^5)*d*e^2 + 2*(a^2*b^4*c^3 - 8*a^3*b^2*c^
4 + 16*a^4*c^5)*e^3 - (a^2*b^7 - 17*a^3*b^5*c + 88*a^4*b^3*c^2 - 144*a^5*b*c^3)*f^3 - ((a*b^7*c - 23*a^2*b^5*c
^2 + 136*a^3*b^3*c^3 - 240*a^4*b*c^4)*d + 18*(a^3*b^4*c^2 - 8*a^4*b^2*c^3 + 16*a^5*c^4)*e)*f^2 + (7*(a*b^5*c^3
- 8*a^2*b^3*c^4 + 16*a^3*b*c^5)*d^2 - 2*(a*b^6*c^2 - 2*a^2*b^4*c^3 - 32*a^3*b^2*c^4 + 96*a^4*c^5)*d*e + 3*(a^
2*b^5*c^2 - 8*a^3*b^3*c^3 + 16*a^4*b*c^4)*e^2)*f - ((a*b^8*c^4 - 8*a^2*b^6*c^5 + 128*a^4*b^2*c^7 - 256*a^5*c^8
)*d - 4*(a^2*b^7*c^4 - 12*a^3*b^5*c^5 + 48*a^4*b^3*c^6 - 64*a^5*b*c^7)*e - (a^2*b^8*c^3 - 24*a^3*b^6*c^4 + 192
*a^4*b^4*c^5 - 640*a^5*b^2*c^6 + 768*a^6*c^7)*f)*sqrt((c^6*d^4 - 2*a*c^5*d^2*e^2 + a^2*c^4*e^4 + (a^2*b^4 - 18
*a^3*b^2*c + 81*a^4*c^2)*f^4 - 4*(3*(a^2*b^2*c^2 - 9*a^3*c^3)*d - (a^2*b^3*c - 9*a^3*b*c^2)*e)*f^3 - 2*(12*a^2
*b*c^3*d*e + (a*b^2*c^3 - 27*a^2*c^4)*d^2 - 3*(a^2*b^2*c^2 - 3*a^3*c^3)*e^2)*f^2 + 4*(3*a*c^5*d^3 - a*b*c^4*d^
2*e - 3*a^2*c^4*d*e^2 + a^2*b*c^3*e^3)*f)/(a^2*b^6*c^6 - 12*a^3*b^4*c^7 + 48*a^4*b^2*c^8 - 64*a^5*c^9)))*sqrt(
-((b^3*c^3 + 12*a*b*c^4)*d^2 - 4*(3*a*b^2*c^3 + 4*a^2*c^4)*d*e + (a*b^3*c^2 + 12*a^2*b*c^3)*e^2 + (a*b^5 - 15*
a^2*b^3*c + 60*a^3*b*c^2)*f^2 - 2*((3*a*b^3*c^2 - 28*a^2*b*c^3)*d - (a*b^4*c - 6*a^2*b^2*c^2 - 24*a^3*c^3)*e)*
f + (a*b^6*c^3 - 12*a^2*b^4*c^4 + 48*a^3*b^2*c^5 - 64*a^4*c^6)*sqrt((c^6*d^4 - 2*a*c^5*d^2*e^2 + a^2*c^4*e^4 +
(a^2*b^4 - 18*a^3*b^2*c + 81*a^4*c^2)*f^4 - 4*(3*(a^2*b^2*c^2 - 9*a^3*c^3)*d - (a^2*b^3*c - 9*a^3*b*c^2)*e)*f
^3 - 2*(12*a^2*b*c^3*d*e + (a*b^2*c^3 - 27*a^2*c^4)*d^2 - 3*(a^2*b^2*c^2 - 3*a^3*c^3)*e^2)*f^2 + 4*(3*a*c^5*d^
3 - a*b*c^4*d^2*e - 3*a^2*c^4*d*e^2 + a^2*b*c^3*e^3)*f)/(a^2*b^6*c^6 - 12*a^3*b^4*c^7 + 48*a^4*b^2*c^8 - 64*a^
5*c^9)))/(a*b^6*c^3 - 12*a^2*b^4*c^4 + 48*a^3*b^2*c^5 - 64*a^4*c^6))) + sqrt(1/2)*((b^2*c^2 - 4*a*c^3)*x^4 + a
*b^2*c - 4*a^2*c^2 + (b^3*c - 4*a*b*c^2)*x^2)*sqrt(-((b^3*c^3 + 12*a*b*c^4)*d^2 - 4*(3*a*b^2*c^3 + 4*a^2*c^4)*
d*e + (a*b^3*c^2 + 12*a^2*b*c^3)*e^2 + (a*b^5 - 15*a^2*b^3*c + 60*a^3*b*c^2)*f^2 - 2*((3*a*b^3*c^2 - 28*a^2*b*
c^3)*d - (a*b^4*c - 6*a^2*b^2*c^2 - 24*a^3*c^3)*e)*f - (a*b^6*c^3 - 12*a^2*b^4*c^4 + 48*a^3*b^2*c^5 - 64*a^4*c
^6)*sqrt((c^6*d^4 - 2*a*c^5*d^2*e^2 + a^2*c^4*e^4 + (a^2*b^4 - 18*a^3*b^2*c + 81*a^4*c^2)*f^4 - 4*(3*(a^2*b^2*
c^2 - 9*a^3*c^3)*d - (a^2*b^3*c - 9*a^3*b*c^2)*e)*f^3 - 2*(12*a^2*b*c^3*d*e + (a*b^2*c^3 - 27*a^2*c^4)*d^2 - 3
*(a^2*b^2*c^2 - 3*a^3*c^3)*e^2)*f^2 + 4*(3*a*c^5*d^3 - a*b*c^4*d^2*e - 3*a^2*c^4*d*e^2 + a^2*b*c^3*e^3)*f)/(a^
2*b^6*c^6 - 12*a^3*b^4*c^7 + 48*a^4*b^2*c^8 - 64*a^5*c^9)))/(a*b^6*c^3 - 12*a^2*b^4*c^4 + 48*a^3*b^2*c^5 - 64*
a^4*c^6))*log(((3*b^2*c^5 + 4*a*c^6)*d^4 - (b^3*c^4 + 12*a*b*c^5)*d^3*e + (a*b^3*c^3 + 12*a^2*b*c^4)*d*e^3 - (
3*a^2*b^2*c^3 + 4*a^3*c^4)*e^4 + (5*a^3*b^4 - 81*a^4*b^2*c + 324*a^5*c^2)*f^4 + ((a*b^6 - 15*a^2*b^4*c + 432*a
^4*c^3)*d - (3*a^2*b^5 - 65*a^3*b^3*c + 324*a^4*b*c^2)*e)*f^3 - 3*(3*(a*b^4*c^2 - 6*a^2*b^2*c^3 - 24*a^3*c^4)*
d^2 - (a*b^5*c + 3*a^2*b^3*c^2 - 108*a^3*b*c^3)*d*e + (3*a^2*b^4*c - 28*a^3*b^2*c^2)*e^2)*f^2 - ((b^4*c^3 - 24
*a*b^2*c^4 - 48*a^2*c^5)*d^3 + 9*(a*b^3*c^3 + 12*a^2*b*c^4)*d^2*e - 3*(a*b^4*c^2 + 12*a^2*b^2*c^3)*d*e^2 + (9*
a^2*b^3*c^2 - 20*a^3*b*c^3)*e^3)*f)*x + 1/2*sqrt(1/2)*((b^5*c^4 - 8*a*b^3*c^5 + 16*a^2*b*c^6)*d^3 - 2*(a*b^4*c
^4 - 8*a^2*b^2*c^5 + 16*a^3*c^6)*d^2*e - (a*b^5*c^3 - 8*a^2*b^3*c^4 + 16*a^3*b*c^5)*d*e^2 + 2*(a^2*b^4*c^3 - 8
*a^3*b^2*c^4 + 16*a^4*c^5)*e^3 - (a^2*b^7 - 17*a^3*b^5*c + 88*a^4*b^3*c^2 - 144*a^5*b*c^3)*f^3 - ((a*b^7*c - 2
3*a^2*b^5*c^2 + 136*a^3*b^3*c^3 - 240*a^4*b*c^4)*d + 18*(a^3*b^4*c^2 - 8*a^4*b^2*c^3 + 16*a^5*c^4)*e)*f^2 + (7
*(a*b^5*c^3 - 8*a^2*b^3*c^4 + 16*a^3*b*c^5)*d^2 - 2*(a*b^6*c^2 - 2*a^2*b^4*c^3 - 32*a^3*b^2*c^4 + 96*a^4*c^5)*
d*e + 3*(a^2*b^5*c^2 - 8*a^3*b^3*c^3 + 16*a^4*b*c^4)*e^2)*f + ((a*b^8*c^4 - 8*a^2*b^6*c^5 + 128*a^4*b^2*c^7 -
256*a^5*c^8)*d - 4*(a^2*b^7*c^4 - 12*a^3*b^5*c^5 + 48*a^4*b^3*c^6 - 64*a^5*b*c^7)*e - (a^2*b^8*c^3 - 24*a^3*b^
6*c^4 + 192*a^4*b^4*c^5 - 640*a^5*b^2*c^6 + 768*a^6*c^7)*f)*sqrt((c^6*d^4 - 2*a*c^5*d^2*e^2 + a^2*c^4*e^4 + (a
^2*b^4 - 18*a^3*b^2*c + 81*a^4*c^2)*f^4 - 4*(3*(a^2*b^2*c^2 - 9*a^3*c^3)*d - (a^2*b^3*c - 9*a^3*b*c^2)*e)*f^3
- 2*(12*a^2*b*c^3*d*e + (a*b^2*c^3 - 27*a^2*c^4)*d^2 - 3*(a^2*b^2*c^2 - 3*a^3*c^3)*e^2)*f^2 + 4*(3*a*c^5*d^3 -
a*b*c^4*d^2*e - 3*a^2*c^4*d*e^2 + a^2*b*c^3*e^3)*f)/(a^2*b^6*c^6 - 12*a^3*b^4*c^7 + 48*a^4*b^2*c^8 - 64*a^5*c
^9)))*sqrt(-((b^3*c^3 + 12*a*b*c^4)*d^2 - 4*(3*a*b^2*c^3 + 4*a^2*c^4)*d*e + (a*b^3*c^2 + 12*a^2*b*c^3)*e^2 + (
a*b^5 - 15*a^2*b^3*c + 60*a^3*b*c^2)*f^2 - 2*((3*a*b^3*c^2 - 28*a^2*b*c^3)*d - (a*b^4*c - 6*a^2*b^2*c^2 - 24*a
^3*c^3)*e)*f - (a*b^6*c^3 - 12*a^2*b^4*c^4 + 48*a^3*b^2*c^5 - 64*a^4*c^6)*sqrt((c^6*d^4 - 2*a*c^5*d^2*e^2 + a^
2*c^4*e^4 + (a^2*b^4 - 18*a^3*b^2*c + 81*a^4*c^2)*f^4 - 4*(3*(a^2*b^2*c^2 - 9*a^3*c^3)*d - (a^2*b^3*c - 9*a^3*
b*c^2)*e)*f^3 - 2*(12*a^2*b*c^3*d*e + (a*b^2*c^3 - 27*a^2*c^4)*d^2 - 3*(a^2*b^2*c^2 - 3*a^3*c^3)*e^2)*f^2 + 4*
(3*a*c^5*d^3 - a*b*c^4*d^2*e - 3*a^2*c^4*d*e^2 + a^2*b*c^3*e^3)*f)/(a^2*b^6*c^6 - 12*a^3*b^4*c^7 + 48*a^4*b^2*
c^8 - 64*a^5*c^9)))/(a*b^6*c^3 - 12*a^2*b^4*c^4 + 48*a^3*b^2*c^5 - 64*a^4*c^6))) - sqrt(1/2)*((b^2*c^2 - 4*a*c
^3)*x^4 + a*b^2*c - 4*a^2*c^2 + (b^3*c - 4*a*b*c^2)*x^2)*sqrt(-((b^3*c^3 + 12*a*b*c^4)*d^2 - 4*(3*a*b^2*c^3 +
4*a^2*c^4)*d*e + (a*b^3*c^2 + 12*a^2*b*c^3)*e^2 + (a*b^5 - 15*a^2*b^3*c + 60*a^3*b*c^2)*f^2 - 2*((3*a*b^3*c^2
- 28*a^2*b*c^3)*d - (a*b^4*c - 6*a^2*b^2*c^2 - 24*a^3*c^3)*e)*f - (a*b^6*c^3 - 12*a^2*b^4*c^4 + 48*a^3*b^2*c^5
- 64*a^4*c^6)*sqrt((c^6*d^4 - 2*a*c^5*d^2*e^2 + a^2*c^4*e^4 + (a^2*b^4 - 18*a^3*b^2*c + 81*a^4*c^2)*f^4 - 4*(
3*(a^2*b^2*c^2 - 9*a^3*c^3)*d - (a^2*b^3*c - 9*a^3*b*c^2)*e)*f^3 - 2*(12*a^2*b*c^3*d*e + (a*b^2*c^3 - 27*a^2*c
^4)*d^2 - 3*(a^2*b^2*c^2 - 3*a^3*c^3)*e^2)*f^2 + 4*(3*a*c^5*d^3 - a*b*c^4*d^2*e - 3*a^2*c^4*d*e^2 + a^2*b*c^3*
e^3)*f)/(a^2*b^6*c^6 - 12*a^3*b^4*c^7 + 48*a^4*b^2*c^8 - 64*a^5*c^9)))/(a*b^6*c^3 - 12*a^2*b^4*c^4 + 48*a^3*b^
2*c^5 - 64*a^4*c^6))*log(((3*b^2*c^5 + 4*a*c^6)*d^4 - (b^3*c^4 + 12*a*b*c^5)*d^3*e + (a*b^3*c^3 + 12*a^2*b*c^4
)*d*e^3 - (3*a^2*b^2*c^3 + 4*a^3*c^4)*e^4 + (5*a^3*b^4 - 81*a^4*b^2*c + 324*a^5*c^2)*f^4 + ((a*b^6 - 15*a^2*b^
4*c + 432*a^4*c^3)*d - (3*a^2*b^5 - 65*a^3*b^3*c + 324*a^4*b*c^2)*e)*f^3 - 3*(3*(a*b^4*c^2 - 6*a^2*b^2*c^3 - 2
4*a^3*c^4)*d^2 - (a*b^5*c + 3*a^2*b^3*c^2 - 108*a^3*b*c^3)*d*e + (3*a^2*b^4*c - 28*a^3*b^2*c^2)*e^2)*f^2 - ((b
^4*c^3 - 24*a*b^2*c^4 - 48*a^2*c^5)*d^3 + 9*(a*b^3*c^3 + 12*a^2*b*c^4)*d^2*e - 3*(a*b^4*c^2 + 12*a^2*b^2*c^3)*
d*e^2 + (9*a^2*b^3*c^2 - 20*a^3*b*c^3)*e^3)*f)*x - 1/2*sqrt(1/2)*((b^5*c^4 - 8*a*b^3*c^5 + 16*a^2*b*c^6)*d^3 -
2*(a*b^4*c^4 - 8*a^2*b^2*c^5 + 16*a^3*c^6)*d^2*e - (a*b^5*c^3 - 8*a^2*b^3*c^4 + 16*a^3*b*c^5)*d*e^2 + 2*(a^2*
b^4*c^3 - 8*a^3*b^2*c^4 + 16*a^4*c^5)*e^3 - (a^2*b^7 - 17*a^3*b^5*c + 88*a^4*b^3*c^2 - 144*a^5*b*c^3)*f^3 - ((
a*b^7*c - 23*a^2*b^5*c^2 + 136*a^3*b^3*c^3 - 240*a^4*b*c^4)*d + 18*(a^3*b^4*c^2 - 8*a^4*b^2*c^3 + 16*a^5*c^4)*
e)*f^2 + (7*(a*b^5*c^3 - 8*a^2*b^3*c^4 + 16*a^3*b*c^5)*d^2 - 2*(a*b^6*c^2 - 2*a^2*b^4*c^3 - 32*a^3*b^2*c^4 + 9
6*a^4*c^5)*d*e + 3*(a^2*b^5*c^2 - 8*a^3*b^3*c^3 + 16*a^4*b*c^4)*e^2)*f + ((a*b^8*c^4 - 8*a^2*b^6*c^5 + 128*a^4
*b^2*c^7 - 256*a^5*c^8)*d - 4*(a^2*b^7*c^4 - 12*a^3*b^5*c^5 + 48*a^4*b^3*c^6 - 64*a^5*b*c^7)*e - (a^2*b^8*c^3
- 24*a^3*b^6*c^4 + 192*a^4*b^4*c^5 - 640*a^5*b^2*c^6 + 768*a^6*c^7)*f)*sqrt((c^6*d^4 - 2*a*c^5*d^2*e^2 + a^2*c
^4*e^4 + (a^2*b^4 - 18*a^3*b^2*c + 81*a^4*c^2)*f^4 - 4*(3*(a^2*b^2*c^2 - 9*a^3*c^3)*d - (a^2*b^3*c - 9*a^3*b*c
^2)*e)*f^3 - 2*(12*a^2*b*c^3*d*e + (a*b^2*c^3 - 27*a^2*c^4)*d^2 - 3*(a^2*b^2*c^2 - 3*a^3*c^3)*e^2)*f^2 + 4*(3*
a*c^5*d^3 - a*b*c^4*d^2*e - 3*a^2*c^4*d*e^2 + a^2*b*c^3*e^3)*f)/(a^2*b^6*c^6 - 12*a^3*b^4*c^7 + 48*a^4*b^2*c^8
- 64*a^5*c^9)))*sqrt(-((b^3*c^3 + 12*a*b*c^4)*d^2 - 4*(3*a*b^2*c^3 + 4*a^2*c^4)*d*e + (a*b^3*c^2 + 12*a^2*b*c
^3)*e^2 + (a*b^5 - 15*a^2*b^3*c + 60*a^3*b*c^2)*f^2 - 2*((3*a*b^3*c^2 - 28*a^2*b*c^3)*d - (a*b^4*c - 6*a^2*b^2
*c^2 - 24*a^3*c^3)*e)*f - (a*b^6*c^3 - 12*a^2*b^4*c^4 + 48*a^3*b^2*c^5 - 64*a^4*c^6)*sqrt((c^6*d^4 - 2*a*c^5*d
^2*e^2 + a^2*c^4*e^4 + (a^2*b^4 - 18*a^3*b^2*c + 81*a^4*c^2)*f^4 - 4*(3*(a^2*b^2*c^2 - 9*a^3*c^3)*d - (a^2*b^3
*c - 9*a^3*b*c^2)*e)*f^3 - 2*(12*a^2*b*c^3*d*e + (a*b^2*c^3 - 27*a^2*c^4)*d^2 - 3*(a^2*b^2*c^2 - 3*a^3*c^3)*e^
2)*f^2 + 4*(3*a*c^5*d^3 - a*b*c^4*d^2*e - 3*a^2*c^4*d*e^2 + a^2*b*c^3*e^3)*f)/(a^2*b^6*c^6 - 12*a^3*b^4*c^7 +
48*a^4*b^2*c^8 - 64*a^5*c^9)))/(a*b^6*c^3 - 12*a^2*b^4*c^4 + 48*a^3*b^2*c^5 - 64*a^4*c^6))) + 2*(b*c*d - 2*a*c
*e + a*b*f)*x)/((b^2*c^2 - 4*a*c^3)*x^4 + a*b^2*c - 4*a^2*c^2 + (b^3*c - 4*a*b*c^2)*x^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(f*x**4+e*x**2+d)/(c*x**4+b*x**2+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(f*x^4+e*x^2+d)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError