### 3.68 $$\int \frac{x^6 (d+e x^2+f x^4)}{(a+b x^2+c x^4)^2} \, dx$$

Optimal. Leaf size=550 $-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (-\frac{20 a^2 c^3 e-19 a b^2 c^2 e-b^3 c (c d-34 a f)+4 a b c^2 (2 c d-13 a f)+3 b^4 c e-5 b^5 f}{\sqrt{b^2-4 a c}}-b^2 c (c d-24 a f)-13 a b c^2 e+2 a c^2 (3 c d-7 a f)+3 b^3 c e-5 b^4 f\right )}{2 \sqrt{2} c^{7/2} \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (\frac{20 a^2 c^3 e-19 a b^2 c^2 e-b^3 c (c d-34 a f)+4 a b c^2 (2 c d-13 a f)+3 b^4 c e-5 b^5 f}{\sqrt{b^2-4 a c}}-b^2 c (c d-24 a f)-13 a b c^2 e+2 a c^2 (3 c d-7 a f)+3 b^3 c e-5 b^4 f\right )}{2 \sqrt{2} c^{7/2} \left (b^2-4 a c\right ) \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{x \left (x^2 \left (-b^2 c (c d-4 a f)-3 a b c^2 e+2 a c^2 (c d-a f)+b^3 c e+b^4 (-f)\right )+a \left (-b c (c d-3 a f)-2 a c^2 e+b^2 c e+b^3 (-f)\right )\right )}{2 c^3 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{x (c e-2 b f)}{c^3}+\frac{f x^3}{3 c^2}$

[Out]

((c*e - 2*b*f)*x)/c^3 + (f*x^3)/(3*c^2) + (x*(a*(b^2*c*e - 2*a*c^2*e - b^3*f - b*c*(c*d - 3*a*f)) + (b^3*c*e -
3*a*b*c^2*e - b^4*f - b^2*c*(c*d - 4*a*f) + 2*a*c^2*(c*d - a*f))*x^2))/(2*c^3*(b^2 - 4*a*c)*(a + b*x^2 + c*x^
4)) - ((3*b^3*c*e - 13*a*b*c^2*e - 5*b^4*f - b^2*c*(c*d - 24*a*f) + 2*a*c^2*(3*c*d - 7*a*f) - (3*b^4*c*e - 19*
a*b^2*c^2*e + 20*a^2*c^3*e - 5*b^5*f - b^3*c*(c*d - 34*a*f) + 4*a*b*c^2*(2*c*d - 13*a*f))/Sqrt[b^2 - 4*a*c])*A
rcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*c^(7/2)*(b^2 - 4*a*c)*Sqrt[b - Sqrt[b^2 - 4
*a*c]]) - ((3*b^3*c*e - 13*a*b*c^2*e - 5*b^4*f - b^2*c*(c*d - 24*a*f) + 2*a*c^2*(3*c*d - 7*a*f) + (3*b^4*c*e -
19*a*b^2*c^2*e + 20*a^2*c^3*e - 5*b^5*f - b^3*c*(c*d - 34*a*f) + 4*a*b*c^2*(2*c*d - 13*a*f))/Sqrt[b^2 - 4*a*c
])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*c^(7/2)*(b^2 - 4*a*c)*Sqrt[b + Sqrt[b^2
- 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 13.2272, antiderivative size = 550, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 30, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.133, Rules used = {1668, 1676, 1166, 205} $-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (-\frac{20 a^2 c^3 e-19 a b^2 c^2 e-b^3 c (c d-34 a f)+4 a b c^2 (2 c d-13 a f)+3 b^4 c e-5 b^5 f}{\sqrt{b^2-4 a c}}-b^2 c (c d-24 a f)-13 a b c^2 e+2 a c^2 (3 c d-7 a f)+3 b^3 c e-5 b^4 f\right )}{2 \sqrt{2} c^{7/2} \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (\frac{20 a^2 c^3 e-19 a b^2 c^2 e-b^3 c (c d-34 a f)+4 a b c^2 (2 c d-13 a f)+3 b^4 c e-5 b^5 f}{\sqrt{b^2-4 a c}}-b^2 c (c d-24 a f)-13 a b c^2 e+2 a c^2 (3 c d-7 a f)+3 b^3 c e-5 b^4 f\right )}{2 \sqrt{2} c^{7/2} \left (b^2-4 a c\right ) \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{x \left (x^2 \left (-b^2 c (c d-4 a f)-3 a b c^2 e+2 a c^2 (c d-a f)+b^3 c e+b^4 (-f)\right )+a \left (-b c (c d-3 a f)-2 a c^2 e+b^2 c e+b^3 (-f)\right )\right )}{2 c^3 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{x (c e-2 b f)}{c^3}+\frac{f x^3}{3 c^2}$

Antiderivative was successfully veriﬁed.

[In]

Int[(x^6*(d + e*x^2 + f*x^4))/(a + b*x^2 + c*x^4)^2,x]

[Out]

((c*e - 2*b*f)*x)/c^3 + (f*x^3)/(3*c^2) + (x*(a*(b^2*c*e - 2*a*c^2*e - b^3*f - b*c*(c*d - 3*a*f)) + (b^3*c*e -
3*a*b*c^2*e - b^4*f - b^2*c*(c*d - 4*a*f) + 2*a*c^2*(c*d - a*f))*x^2))/(2*c^3*(b^2 - 4*a*c)*(a + b*x^2 + c*x^
4)) - ((3*b^3*c*e - 13*a*b*c^2*e - 5*b^4*f - b^2*c*(c*d - 24*a*f) + 2*a*c^2*(3*c*d - 7*a*f) - (3*b^4*c*e - 19*
a*b^2*c^2*e + 20*a^2*c^3*e - 5*b^5*f - b^3*c*(c*d - 34*a*f) + 4*a*b*c^2*(2*c*d - 13*a*f))/Sqrt[b^2 - 4*a*c])*A
rcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*c^(7/2)*(b^2 - 4*a*c)*Sqrt[b - Sqrt[b^2 - 4
*a*c]]) - ((3*b^3*c*e - 13*a*b*c^2*e - 5*b^4*f - b^2*c*(c*d - 24*a*f) + 2*a*c^2*(3*c*d - 7*a*f) + (3*b^4*c*e -
19*a*b^2*c^2*e + 20*a^2*c^3*e - 5*b^5*f - b^3*c*(c*d - 34*a*f) + 4*a*b*c^2*(2*c*d - 13*a*f))/Sqrt[b^2 - 4*a*c
])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*c^(7/2)*(b^2 - 4*a*c)*Sqrt[b + Sqrt[b^2
- 4*a*c]])

Rule 1668

Int[(Pq_)*(x_)^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{d = Coeff[PolynomialRemainde
r[x^m*Pq, a + b*x^2 + c*x^4, x], x, 0], e = Coeff[PolynomialRemainder[x^m*Pq, a + b*x^2 + c*x^4, x], x, 2]}, S
imp[(x*(a + b*x^2 + c*x^4)^(p + 1)*(a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2))/(2*a*(p + 1)*(b^2 - 4*a*c)
), x] + Dist[1/(2*a*(p + 1)*(b^2 - 4*a*c)), Int[(a + b*x^2 + c*x^4)^(p + 1)*ExpandToSum[2*a*(p + 1)*(b^2 - 4*a
*c)*PolynomialQuotient[x^m*Pq, a + b*x^2 + c*x^4, x] + b^2*d*(2*p + 3) - 2*a*c*d*(4*p + 5) - a*b*e + c*(4*p +
7)*(b*d - 2*a*e)*x^2, x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x^2] && GtQ[Expon[Pq, x^2], 1] && NeQ[b^
2 - 4*a*c, 0] && LtQ[p, -1] && IGtQ[m/2, 0]

Rule 1676

Int[(Pq_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[Pq/(a + b*x^2 + c*x^4), x], x
] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x^2] && Expon[Pq, x^2] > 1

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^6 \left (d+e x^2+f x^4\right )}{\left (a+b x^2+c x^4\right )^2} \, dx &=\frac{x \left (a \left (b^2 c e-2 a c^2 e-b^3 f-b c (c d-3 a f)\right )+\left (b^3 c e-3 a b c^2 e-b^4 f-b^2 c (c d-4 a f)+2 a c^2 (c d-a f)\right ) x^2\right )}{2 c^3 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\int \frac{\frac{a^2 \left (b^2 c e-2 a c^2 e-b^3 f-b c (c d-3 a f)\right )}{c^3}+\frac{a \left (b^3 c e-5 a b c^2 e-b^4 f-b^2 c (c d-6 a f)+6 a c^2 (c d-a f)\right ) x^2}{c^3}-\frac{2 a \left (b^2-4 a c\right ) (c e-b f) x^4}{c^2}+2 a \left (4 a-\frac{b^2}{c}\right ) f x^6}{a+b x^2+c x^4} \, dx}{2 a \left (b^2-4 a c\right )}\\ &=\frac{x \left (a \left (b^2 c e-2 a c^2 e-b^3 f-b c (c d-3 a f)\right )+\left (b^3 c e-3 a b c^2 e-b^4 f-b^2 c (c d-4 a f)+2 a c^2 (c d-a f)\right ) x^2\right )}{2 c^3 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\int \left (-\frac{2 a \left (b^2-4 a c\right ) (c e-2 b f)}{c^3}-\frac{2 a \left (b^2-4 a c\right ) f x^2}{c^2}-\frac{-a^2 \left (3 b^2 c e-10 a c^2 e-5 b^3 f-b c (c d-19 a f)\right )-a \left (3 b^3 c e-13 a b c^2 e-5 b^4 f-b^2 c (c d-24 a f)+2 a c^2 (3 c d-7 a f)\right ) x^2}{c^3 \left (a+b x^2+c x^4\right )}\right ) \, dx}{2 a \left (b^2-4 a c\right )}\\ &=\frac{(c e-2 b f) x}{c^3}+\frac{f x^3}{3 c^2}+\frac{x \left (a \left (b^2 c e-2 a c^2 e-b^3 f-b c (c d-3 a f)\right )+\left (b^3 c e-3 a b c^2 e-b^4 f-b^2 c (c d-4 a f)+2 a c^2 (c d-a f)\right ) x^2\right )}{2 c^3 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{\int \frac{-a^2 \left (3 b^2 c e-10 a c^2 e-5 b^3 f-b c (c d-19 a f)\right )-a \left (3 b^3 c e-13 a b c^2 e-5 b^4 f-b^2 c (c d-24 a f)+2 a c^2 (3 c d-7 a f)\right ) x^2}{a+b x^2+c x^4} \, dx}{2 a c^3 \left (b^2-4 a c\right )}\\ &=\frac{(c e-2 b f) x}{c^3}+\frac{f x^3}{3 c^2}+\frac{x \left (a \left (b^2 c e-2 a c^2 e-b^3 f-b c (c d-3 a f)\right )+\left (b^3 c e-3 a b c^2 e-b^4 f-b^2 c (c d-4 a f)+2 a c^2 (c d-a f)\right ) x^2\right )}{2 c^3 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\left (3 b^3 c e-13 a b c^2 e-5 b^4 f-b^2 c (c d-24 a f)+2 a c^2 (3 c d-7 a f)-\frac{3 b^4 c e-19 a b^2 c^2 e+20 a^2 c^3 e-5 b^5 f-b^3 c (c d-34 a f)+4 a b c^2 (2 c d-13 a f)}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{4 c^3 \left (b^2-4 a c\right )}-\frac{\left (3 b^3 c e-13 a b c^2 e-5 b^4 f-b^2 c (c d-24 a f)+2 a c^2 (3 c d-7 a f)+\frac{3 b^4 c e-19 a b^2 c^2 e+20 a^2 c^3 e-5 b^5 f-b^3 c (c d-34 a f)+4 a b c^2 (2 c d-13 a f)}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{4 c^3 \left (b^2-4 a c\right )}\\ &=\frac{(c e-2 b f) x}{c^3}+\frac{f x^3}{3 c^2}+\frac{x \left (a \left (b^2 c e-2 a c^2 e-b^3 f-b c (c d-3 a f)\right )+\left (b^3 c e-3 a b c^2 e-b^4 f-b^2 c (c d-4 a f)+2 a c^2 (c d-a f)\right ) x^2\right )}{2 c^3 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\left (3 b^3 c e-13 a b c^2 e-5 b^4 f-b^2 c (c d-24 a f)+2 a c^2 (3 c d-7 a f)-\frac{3 b^4 c e-19 a b^2 c^2 e+20 a^2 c^3 e-5 b^5 f-b^3 c (c d-34 a f)+4 a b c^2 (2 c d-13 a f)}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} c^{7/2} \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\left (3 b^3 c e-13 a b c^2 e-5 b^4 f-b^2 c (c d-24 a f)+2 a c^2 (3 c d-7 a f)+\frac{3 b^4 c e-19 a b^2 c^2 e+20 a^2 c^3 e-5 b^5 f-b^3 c (c d-34 a f)+4 a b c^2 (2 c d-13 a f)}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} c^{7/2} \left (b^2-4 a c\right ) \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 2.3131, size = 648, normalized size = 1.18 $\frac{-\frac{6 \sqrt{c} x \left (a^2 c \left (2 c \left (e+f x^2\right )-3 b f\right )+a \left (-b^2 c \left (e+4 f x^2\right )+b^3 f+b c^2 \left (d+3 e x^2\right )-2 c^3 d x^2\right )+b^2 x^2 \left (b^2 f-b c e+c^2 d\right )\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{3 \sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (a b c^2 \left (13 e \sqrt{b^2-4 a c}-52 a f+8 c d\right )+2 a c^2 \left (-3 c d \sqrt{b^2-4 a c}+7 a f \sqrt{b^2-4 a c}+10 a c e\right )-b^3 c \left (3 e \sqrt{b^2-4 a c}-34 a f+c d\right )+b^2 c \left (c d \sqrt{b^2-4 a c}-24 a f \sqrt{b^2-4 a c}-19 a c e\right )+b^4 \left (5 f \sqrt{b^2-4 a c}+3 c e\right )-5 b^5 f\right )}{\left (b^2-4 a c\right )^{3/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (a b c^2 \left (13 e \sqrt{b^2-4 a c}+52 a f-8 c d\right )-2 a c^2 \left (3 c d \sqrt{b^2-4 a c}-7 a f \sqrt{b^2-4 a c}+10 a c e\right )+b^3 c \left (-3 e \sqrt{b^2-4 a c}-34 a f+c d\right )+b^2 c \left (c d \sqrt{b^2-4 a c}-24 a f \sqrt{b^2-4 a c}+19 a c e\right )+b^4 \left (5 f \sqrt{b^2-4 a c}-3 c e\right )+5 b^5 f\right )}{\left (b^2-4 a c\right )^{3/2} \sqrt{\sqrt{b^2-4 a c}+b}}+12 \sqrt{c} x (c e-2 b f)+4 c^{3/2} f x^3}{12 c^{7/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(x^6*(d + e*x^2 + f*x^4))/(a + b*x^2 + c*x^4)^2,x]

[Out]

(12*Sqrt[c]*(c*e - 2*b*f)*x + 4*c^(3/2)*f*x^3 - (6*Sqrt[c]*x*(b^2*(c^2*d - b*c*e + b^2*f)*x^2 + a^2*c*(-3*b*f
+ 2*c*(e + f*x^2)) + a*(b^3*f - 2*c^3*d*x^2 + b*c^2*(d + 3*e*x^2) - b^2*c*(e + 4*f*x^2))))/((b^2 - 4*a*c)*(a +
b*x^2 + c*x^4)) + (3*Sqrt[2]*(-5*b^5*f + a*b*c^2*(8*c*d + 13*Sqrt[b^2 - 4*a*c]*e - 52*a*f) - b^3*c*(c*d + 3*S
qrt[b^2 - 4*a*c]*e - 34*a*f) + b^4*(3*c*e + 5*Sqrt[b^2 - 4*a*c]*f) + b^2*c*(c*Sqrt[b^2 - 4*a*c]*d - 19*a*c*e -
24*a*Sqrt[b^2 - 4*a*c]*f) + 2*a*c^2*(-3*c*Sqrt[b^2 - 4*a*c]*d + 10*a*c*e + 7*a*Sqrt[b^2 - 4*a*c]*f))*ArcTan[(
Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (3*Sqrt[2
]*(5*b^5*f + b^3*c*(c*d - 3*Sqrt[b^2 - 4*a*c]*e - 34*a*f) + a*b*c^2*(-8*c*d + 13*Sqrt[b^2 - 4*a*c]*e + 52*a*f)
+ b^4*(-3*c*e + 5*Sqrt[b^2 - 4*a*c]*f) + b^2*c*(c*Sqrt[b^2 - 4*a*c]*d + 19*a*c*e - 24*a*Sqrt[b^2 - 4*a*c]*f)
- 2*a*c^2*(3*c*Sqrt[b^2 - 4*a*c]*d + 10*a*c*e - 7*a*Sqrt[b^2 - 4*a*c]*f))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b +
Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(12*c^(7/2))

________________________________________________________________________________________

Maple [B]  time = 0.053, size = 2558, normalized size = 4.7 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x^6*(f*x^4+e*x^2+d)/(c*x^4+b*x^2+a)^2,x)

[Out]

-13/c/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^
2)^(1/2)-b)*c)^(1/2))*a^2*b*f+17/2/c^2/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)
*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*a*b^3*f-19/4/c/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/(
((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*a*b^2*e-13/c/(4*a*c-b^2)
/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/
2))*a^2*b*f+17/2/c^2/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2
)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*b^3*f-19/4/c/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/
2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*b^2*e+1/c/(c*x^4+b*x^2+a)*a^2/(4*a*c-b^2)*
x*e+1/c/(c*x^4+b*x^2+a)/(4*a*c-b^2)*x^3*a^2*f-1/2/c^2/(c*x^4+b*x^2+a)/(4*a*c-b^2)*x^3*b^3*e+1/2/c/(c*x^4+b*x^2
+a)/(4*a*c-b^2)*x^3*b^2*d+1/2/c^3/(c*x^4+b*x^2+a)/(4*a*c-b^2)*x^3*b^4*f+3/2/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^
2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*d-3/2/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+
b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*a*d+1/c^2*e*x-2/c^3*b*f*x-1/(c*x^
4+b*x^2+a)/(4*a*c-b^2)*x^3*a*d+1/3*f*x^3/c^2+7/2/c/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctan
h(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*a^2*f+5/4/c^3/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(
1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^4*f-3/4/c^2/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1
/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^3*e+1/4/c/(4*a*c-b^2)*2^(1/2)/(((-4*a*
c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^2*d-7/2/c/(4*a*c-b^2)*2^(1/2)
/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a^2*f+2/(4*a*c-b^2)/(-4
*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*
a*b*d+2/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+
b^2)^(1/2)-b)*c)^(1/2))*a*b*d-5/4/c^3/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*
arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^5*f+3/4/c^2/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+
(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^4*e-1/4/c/(4*a*c-b^2)/(-4*
a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b
^3*d-5/4/c^3/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4
*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^5*f+3/4/c^2/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(
1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^4*e-1/4/c/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/
(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^3*d-6/c^2/(4*a*c-b^2)
*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*a*b^2*f+13/4/c
/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*a*
b*e+6/c^2/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(
1/2))*a*b^2*f-13/4/c/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^
(1/2))*c)^(1/2))*a*b*e+5/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^
(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a^2*e+5/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)
*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*a^2*e+1/2/c^3/(c*x^4+b*x^2+a)*a/(4*a*c-b^2)*x*
b^3*f-2/c^2/(c*x^4+b*x^2+a)/(4*a*c-b^2)*x^3*a*b^2*f+3/2/c/(c*x^4+b*x^2+a)/(4*a*c-b^2)*x^3*a*b*e-3/2/c^2/(c*x^4
+b*x^2+a)*a^2/(4*a*c-b^2)*x*b*f-1/2/c^2/(c*x^4+b*x^2+a)*a/(4*a*c-b^2)*x*b^2*e+1/2/c/(c*x^4+b*x^2+a)*a/(4*a*c-b
^2)*x*b*d-5/4/c^3/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/
2))*c)^(1/2))*b^4*f+3/4/c^2/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*
c+b^2)^(1/2))*c)^(1/2))*b^3*e-1/4/c/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((
b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2*d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6*(f*x^4+e*x^2+d)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6*(f*x^4+e*x^2+d)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**6*(f*x**4+e*x**2+d)/(c*x**4+b*x**2+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6*(f*x^4+e*x^2+d)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError