### 3.59 $$\int \frac{d+e x^2+f x^4}{x^4 (a+b x^2+c x^4)} \, dx$$

Optimal. Leaf size=267 $\frac{\sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (\frac{-a b e-2 a (c d-a f)+b^2 d}{\sqrt{b^2-4 a c}}-a e+b d\right )}{\sqrt{2} a^2 \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (-a \left (-e \sqrt{b^2-4 a c}-2 a f+2 c d\right )-b \left (d \sqrt{b^2-4 a c}+a e\right )+b^2 d\right )}{\sqrt{2} a^2 \sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{b d-a e}{a^2 x}-\frac{d}{3 a x^3}$

[Out]

-d/(3*a*x^3) + (b*d - a*e)/(a^2*x) + (Sqrt[c]*(b*d - a*e + (b^2*d - a*b*e - 2*a*(c*d - a*f))/Sqrt[b^2 - 4*a*c]
)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[c
]*(b^2*d - b*(Sqrt[b^2 - 4*a*c]*d + a*e) - a*(2*c*d - Sqrt[b^2 - 4*a*c]*e - 2*a*f))*ArcTan[(Sqrt[2]*Sqrt[c]*x)
/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 1.0651, antiderivative size = 267, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 30, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.1, Rules used = {1664, 1166, 205} $\frac{\sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (\frac{-a b e-2 a (c d-a f)+b^2 d}{\sqrt{b^2-4 a c}}-a e+b d\right )}{\sqrt{2} a^2 \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (-a \left (-e \sqrt{b^2-4 a c}-2 a f+2 c d\right )-b \left (d \sqrt{b^2-4 a c}+a e\right )+b^2 d\right )}{\sqrt{2} a^2 \sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{b d-a e}{a^2 x}-\frac{d}{3 a x^3}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x^2 + f*x^4)/(x^4*(a + b*x^2 + c*x^4)),x]

[Out]

-d/(3*a*x^3) + (b*d - a*e)/(a^2*x) + (Sqrt[c]*(b*d - a*e + (b^2*d - a*b*e - 2*a*(c*d - a*f))/Sqrt[b^2 - 4*a*c]
)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[c
]*(b^2*d - b*(Sqrt[b^2 - 4*a*c]*d + a*e) - a*(2*c*d - Sqrt[b^2 - 4*a*c]*e - 2*a*f))*ArcTan[(Sqrt[2]*Sqrt[c]*x)
/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 1664

Int[(Pq_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d*x
)^m*Pq*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && PolyQ[Pq, x^2] && IGtQ[p, -2]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{d+e x^2+f x^4}{x^4 \left (a+b x^2+c x^4\right )} \, dx &=\int \left (\frac{d}{a x^4}+\frac{-b d+a e}{a^2 x^2}+\frac{b^2 d-a b e-a (c d-a f)+c (b d-a e) x^2}{a^2 \left (a+b x^2+c x^4\right )}\right ) \, dx\\ &=-\frac{d}{3 a x^3}+\frac{b d-a e}{a^2 x}+\frac{\int \frac{b^2 d-a b e-a (c d-a f)+c (b d-a e) x^2}{a+b x^2+c x^4} \, dx}{a^2}\\ &=-\frac{d}{3 a x^3}+\frac{b d-a e}{a^2 x}+\frac{\left (c \left (b d-a e-\frac{b^2 d-a b e-2 a (c d-a f)}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{2 a^2}+\frac{\left (c \left (b d-a e+\frac{b^2 d-a b e-2 a (c d-a f)}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{2 a^2}\\ &=-\frac{d}{3 a x^3}+\frac{b d-a e}{a^2 x}+\frac{\sqrt{c} \left (b d-a e+\frac{b^2 d-a b e-2 a (c d-a f)}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (b d-a e-\frac{b^2 d-a b e-2 a (c d-a f)}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 0.372637, size = 284, normalized size = 1.06 $\frac{\frac{3 \sqrt{2} \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (a \left (-e \sqrt{b^2-4 a c}+2 a f-2 c d\right )+b \left (d \sqrt{b^2-4 a c}-a e\right )+b^2 d\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \sqrt{2} \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (-a \left (e \sqrt{b^2-4 a c}+2 a f-2 c d\right )+b \left (d \sqrt{b^2-4 a c}+a e\right )+b^2 (-d)\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{6 b d-6 a e}{x}-\frac{2 a d}{x^3}}{6 a^2}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x^2 + f*x^4)/(x^4*(a + b*x^2 + c*x^4)),x]

[Out]

((-2*a*d)/x^3 + (6*b*d - 6*a*e)/x + (3*Sqrt[2]*Sqrt[c]*(b^2*d + b*(Sqrt[b^2 - 4*a*c]*d - a*e) + a*(-2*c*d - Sq
rt[b^2 - 4*a*c]*e + 2*a*f))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b
- Sqrt[b^2 - 4*a*c]]) + (3*Sqrt[2]*Sqrt[c]*(-(b^2*d) + b*(Sqrt[b^2 - 4*a*c]*d + a*e) - a*(-2*c*d + Sqrt[b^2 -
4*a*c]*e + 2*a*f))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[
b^2 - 4*a*c]]))/(6*a^2)

________________________________________________________________________________________

Maple [B]  time = 0.029, size = 727, normalized size = 2.7 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((f*x^4+e*x^2+d)/x^4/(c*x^4+b*x^2+a),x)

[Out]

-1/3*d/a/x^3-1/a/x*e+1/a^2/x*b*d+1/2/a*c*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*
c+b^2)^(1/2)-b)*c)^(1/2))*e-1/2/a^2*c*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b
^2)^(1/2)-b)*c)^(1/2))*b*d-c/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(
((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*f+1/2/a*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh
(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b*e+1/a*c^2/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*
c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*d-1/2/a^2*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*
c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^2*d-1/2/a*c*2^(1/2)/((b+(-4*a
*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*e+1/2/a^2*c*2^(1/2)/((b+(-4*a*c+b
^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*d-c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+
(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*f+1/2/a*c/(-4*a*c+b^2)^(1/2)
*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*e+1/a*c^2/(-4
*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*
d-1/2/a^2*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1
/2))*c)^(1/2))*b^2*d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^4+e*x^2+d)/x^4/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 27.6739, size = 19478, normalized size = 72.95 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^4+e*x^2+d)/x^4/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

-1/6*(3*sqrt(1/2)*a^2*x^3*sqrt(-(a^4*b*f^2 + (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*d^2 - 2*(a*b^4 - 4*a^2*b^2*c + 2*
a^3*c^2)*d*e + (a^2*b^3 - 3*a^3*b*c)*e^2 + 2*((a^2*b^3 - 3*a^3*b*c)*d - (a^3*b^2 - 2*a^4*c)*e)*f + (a^5*b^2 -
4*a^6*c)*sqrt((a^8*f^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^4 - 4*(a*b^7 - 5*a^2*b
^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d^3*e + 2*(3*a^2*b^6 - 12*a^3*b^4*c + 12*a^4*b^2*c^2 - a^5*c^3)*d^2*e^2 -
4*(a^3*b^5 - 3*a^4*b^3*c + 2*a^5*b*c^2)*d*e^3 + (a^4*b^4 - 2*a^5*b^2*c + a^6*c^2)*e^4 - 4*(a^7*b*e - (a^6*b^2
- a^7*c)*d)*f^3 + 2*((3*a^4*b^4 - 7*a^5*b^2*c + 3*a^6*c^2)*d^2 - 2*(3*a^5*b^3 - 4*a^6*b*c)*d*e + (3*a^6*b^2 -
a^7*c)*e^2)*f^2 + 4*((a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2 - a^5*c^3)*d^3 - (3*a^3*b^5 - 9*a^4*b^3*c + 5*a^5*
b*c^2)*d^2*e + (3*a^4*b^4 - 6*a^5*b^2*c + a^6*c^2)*d*e^2 - (a^5*b^3 - a^6*b*c)*e^3)*f)/(a^10*b^2 - 4*a^11*c)))
/(a^5*b^2 - 4*a^6*c))*log(2*(a^6*c*f^4 + (b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*d^4 - (b^5*c^2 - a*b^3*c^3 - 3*a^2*
b*c^4)*d^3*e + 3*(a*b^4*c^2 - 2*a^2*b^2*c^3)*d^2*e^2 - (3*a^2*b^3*c^2 - 5*a^3*b*c^3)*d*e^3 + (a^3*b^2*c^2 - a^
4*c^3)*e^4 - (3*a^5*b*c*e - (3*a^4*b^2*c - 4*a^5*c^2)*d)*f^3 + 3*(a^4*b^2*c*e^2 + (a^2*b^4*c - 3*a^3*b^2*c^2 +
2*a^4*c^3)*d^2 - (2*a^3*b^3*c - 3*a^4*b*c^2)*d*e)*f^2 + ((b^6*c - 5*a*b^4*c^2 + 9*a^2*b^2*c^3 - 4*a^3*c^4)*d^
3 - 3*(a*b^5*c - 3*a^2*b^3*c^2 + 3*a^3*b*c^3)*d^2*e + 3*(a^2*b^4*c - a^3*b^2*c^2)*d*e^2 - (a^3*b^3*c + a^4*b*c
^2)*e^3)*f)*x + sqrt(1/2)*((b^8 - 8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4)*d^3 - (3*a*b^7 - 21
*a^2*b^5*c + 41*a^3*b^3*c^2 - 20*a^4*b*c^3)*d^2*e + (3*a^2*b^6 - 18*a^3*b^4*c + 25*a^4*b^2*c^2 - 4*a^5*c^3)*d*
e^2 - (a^3*b^5 - 5*a^4*b^3*c + 4*a^5*b*c^2)*e^3 + (a^6*b^2 - 4*a^7*c)*f^3 + 3*((a^4*b^4 - 5*a^5*b^2*c + 4*a^6*
c^2)*d - (a^5*b^3 - 4*a^6*b*c)*e)*f^2 + ((3*a^2*b^6 - 19*a^3*b^4*c + 31*a^4*b^2*c^2 - 12*a^5*c^3)*d^2 - 2*(3*a
^3*b^5 - 16*a^4*b^3*c + 16*a^5*b*c^2)*d*e + (3*a^4*b^4 - 13*a^5*b^2*c + 4*a^6*c^2)*e^2)*f - ((a^5*b^5 - 7*a^6*
b^3*c + 12*a^7*b*c^2)*d - (a^6*b^4 - 6*a^7*b^2*c + 8*a^8*c^2)*e + (a^7*b^3 - 4*a^8*b*c)*f)*sqrt((a^8*f^4 + (b^
8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^4 - 4*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4
*b*c^3)*d^3*e + 2*(3*a^2*b^6 - 12*a^3*b^4*c + 12*a^4*b^2*c^2 - a^5*c^3)*d^2*e^2 - 4*(a^3*b^5 - 3*a^4*b^3*c + 2
*a^5*b*c^2)*d*e^3 + (a^4*b^4 - 2*a^5*b^2*c + a^6*c^2)*e^4 - 4*(a^7*b*e - (a^6*b^2 - a^7*c)*d)*f^3 + 2*((3*a^4*
b^4 - 7*a^5*b^2*c + 3*a^6*c^2)*d^2 - 2*(3*a^5*b^3 - 4*a^6*b*c)*d*e + (3*a^6*b^2 - a^7*c)*e^2)*f^2 + 4*((a^2*b^
6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2 - a^5*c^3)*d^3 - (3*a^3*b^5 - 9*a^4*b^3*c + 5*a^5*b*c^2)*d^2*e + (3*a^4*b^4 -
6*a^5*b^2*c + a^6*c^2)*d*e^2 - (a^5*b^3 - a^6*b*c)*e^3)*f)/(a^10*b^2 - 4*a^11*c)))*sqrt(-(a^4*b*f^2 + (b^5 - 5
*a*b^3*c + 5*a^2*b*c^2)*d^2 - 2*(a*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*d*e + (a^2*b^3 - 3*a^3*b*c)*e^2 + 2*((a^2*b^
3 - 3*a^3*b*c)*d - (a^3*b^2 - 2*a^4*c)*e)*f + (a^5*b^2 - 4*a^6*c)*sqrt((a^8*f^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^
4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^4 - 4*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d^3*e + 2*(3*a^2*
b^6 - 12*a^3*b^4*c + 12*a^4*b^2*c^2 - a^5*c^3)*d^2*e^2 - 4*(a^3*b^5 - 3*a^4*b^3*c + 2*a^5*b*c^2)*d*e^3 + (a^4*
b^4 - 2*a^5*b^2*c + a^6*c^2)*e^4 - 4*(a^7*b*e - (a^6*b^2 - a^7*c)*d)*f^3 + 2*((3*a^4*b^4 - 7*a^5*b^2*c + 3*a^6
*c^2)*d^2 - 2*(3*a^5*b^3 - 4*a^6*b*c)*d*e + (3*a^6*b^2 - a^7*c)*e^2)*f^2 + 4*((a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b
^2*c^2 - a^5*c^3)*d^3 - (3*a^3*b^5 - 9*a^4*b^3*c + 5*a^5*b*c^2)*d^2*e + (3*a^4*b^4 - 6*a^5*b^2*c + a^6*c^2)*d*
e^2 - (a^5*b^3 - a^6*b*c)*e^3)*f)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))) - 3*sqrt(1/2)*a^2*x^3*sqrt(-(a
^4*b*f^2 + (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*d^2 - 2*(a*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*d*e + (a^2*b^3 - 3*a^3*b*
c)*e^2 + 2*((a^2*b^3 - 3*a^3*b*c)*d - (a^3*b^2 - 2*a^4*c)*e)*f + (a^5*b^2 - 4*a^6*c)*sqrt((a^8*f^4 + (b^8 - 6*
a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^4 - 4*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3
)*d^3*e + 2*(3*a^2*b^6 - 12*a^3*b^4*c + 12*a^4*b^2*c^2 - a^5*c^3)*d^2*e^2 - 4*(a^3*b^5 - 3*a^4*b^3*c + 2*a^5*b
*c^2)*d*e^3 + (a^4*b^4 - 2*a^5*b^2*c + a^6*c^2)*e^4 - 4*(a^7*b*e - (a^6*b^2 - a^7*c)*d)*f^3 + 2*((3*a^4*b^4 -
7*a^5*b^2*c + 3*a^6*c^2)*d^2 - 2*(3*a^5*b^3 - 4*a^6*b*c)*d*e + (3*a^6*b^2 - a^7*c)*e^2)*f^2 + 4*((a^2*b^6 - 4*
a^3*b^4*c + 4*a^4*b^2*c^2 - a^5*c^3)*d^3 - (3*a^3*b^5 - 9*a^4*b^3*c + 5*a^5*b*c^2)*d^2*e + (3*a^4*b^4 - 6*a^5*
b^2*c + a^6*c^2)*d*e^2 - (a^5*b^3 - a^6*b*c)*e^3)*f)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))*log(2*(a^6*c
*f^4 + (b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*d^4 - (b^5*c^2 - a*b^3*c^3 - 3*a^2*b*c^4)*d^3*e + 3*(a*b^4*c^2 - 2*a^
2*b^2*c^3)*d^2*e^2 - (3*a^2*b^3*c^2 - 5*a^3*b*c^3)*d*e^3 + (a^3*b^2*c^2 - a^4*c^3)*e^4 - (3*a^5*b*c*e - (3*a^4
*b^2*c - 4*a^5*c^2)*d)*f^3 + 3*(a^4*b^2*c*e^2 + (a^2*b^4*c - 3*a^3*b^2*c^2 + 2*a^4*c^3)*d^2 - (2*a^3*b^3*c - 3
*a^4*b*c^2)*d*e)*f^2 + ((b^6*c - 5*a*b^4*c^2 + 9*a^2*b^2*c^3 - 4*a^3*c^4)*d^3 - 3*(a*b^5*c - 3*a^2*b^3*c^2 + 3
*a^3*b*c^3)*d^2*e + 3*(a^2*b^4*c - a^3*b^2*c^2)*d*e^2 - (a^3*b^3*c + a^4*b*c^2)*e^3)*f)*x - sqrt(1/2)*((b^8 -
8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4)*d^3 - (3*a*b^7 - 21*a^2*b^5*c + 41*a^3*b^3*c^2 - 20*a
^4*b*c^3)*d^2*e + (3*a^2*b^6 - 18*a^3*b^4*c + 25*a^4*b^2*c^2 - 4*a^5*c^3)*d*e^2 - (a^3*b^5 - 5*a^4*b^3*c + 4*a
^5*b*c^2)*e^3 + (a^6*b^2 - 4*a^7*c)*f^3 + 3*((a^4*b^4 - 5*a^5*b^2*c + 4*a^6*c^2)*d - (a^5*b^3 - 4*a^6*b*c)*e)*
f^2 + ((3*a^2*b^6 - 19*a^3*b^4*c + 31*a^4*b^2*c^2 - 12*a^5*c^3)*d^2 - 2*(3*a^3*b^5 - 16*a^4*b^3*c + 16*a^5*b*c
^2)*d*e + (3*a^4*b^4 - 13*a^5*b^2*c + 4*a^6*c^2)*e^2)*f - ((a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*d - (a^6*b^4
- 6*a^7*b^2*c + 8*a^8*c^2)*e + (a^7*b^3 - 4*a^8*b*c)*f)*sqrt((a^8*f^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6
*a^3*b^2*c^3 + a^4*c^4)*d^4 - 4*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d^3*e + 2*(3*a^2*b^6 - 12*
a^3*b^4*c + 12*a^4*b^2*c^2 - a^5*c^3)*d^2*e^2 - 4*(a^3*b^5 - 3*a^4*b^3*c + 2*a^5*b*c^2)*d*e^3 + (a^4*b^4 - 2*a
^5*b^2*c + a^6*c^2)*e^4 - 4*(a^7*b*e - (a^6*b^2 - a^7*c)*d)*f^3 + 2*((3*a^4*b^4 - 7*a^5*b^2*c + 3*a^6*c^2)*d^2
- 2*(3*a^5*b^3 - 4*a^6*b*c)*d*e + (3*a^6*b^2 - a^7*c)*e^2)*f^2 + 4*((a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2 -
a^5*c^3)*d^3 - (3*a^3*b^5 - 9*a^4*b^3*c + 5*a^5*b*c^2)*d^2*e + (3*a^4*b^4 - 6*a^5*b^2*c + a^6*c^2)*d*e^2 - (a^
5*b^3 - a^6*b*c)*e^3)*f)/(a^10*b^2 - 4*a^11*c)))*sqrt(-(a^4*b*f^2 + (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*d^2 - 2*(a
*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*d*e + (a^2*b^3 - 3*a^3*b*c)*e^2 + 2*((a^2*b^3 - 3*a^3*b*c)*d - (a^3*b^2 - 2*a^
4*c)*e)*f + (a^5*b^2 - 4*a^6*c)*sqrt((a^8*f^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d
^4 - 4*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d^3*e + 2*(3*a^2*b^6 - 12*a^3*b^4*c + 12*a^4*b^2*c^
2 - a^5*c^3)*d^2*e^2 - 4*(a^3*b^5 - 3*a^4*b^3*c + 2*a^5*b*c^2)*d*e^3 + (a^4*b^4 - 2*a^5*b^2*c + a^6*c^2)*e^4 -
4*(a^7*b*e - (a^6*b^2 - a^7*c)*d)*f^3 + 2*((3*a^4*b^4 - 7*a^5*b^2*c + 3*a^6*c^2)*d^2 - 2*(3*a^5*b^3 - 4*a^6*b
*c)*d*e + (3*a^6*b^2 - a^7*c)*e^2)*f^2 + 4*((a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2 - a^5*c^3)*d^3 - (3*a^3*b^5
- 9*a^4*b^3*c + 5*a^5*b*c^2)*d^2*e + (3*a^4*b^4 - 6*a^5*b^2*c + a^6*c^2)*d*e^2 - (a^5*b^3 - a^6*b*c)*e^3)*f)/
(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))) + 3*sqrt(1/2)*a^2*x^3*sqrt(-(a^4*b*f^2 + (b^5 - 5*a*b^3*c + 5*a^
2*b*c^2)*d^2 - 2*(a*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*d*e + (a^2*b^3 - 3*a^3*b*c)*e^2 + 2*((a^2*b^3 - 3*a^3*b*c)*
d - (a^3*b^2 - 2*a^4*c)*e)*f - (a^5*b^2 - 4*a^6*c)*sqrt((a^8*f^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b
^2*c^3 + a^4*c^4)*d^4 - 4*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d^3*e + 2*(3*a^2*b^6 - 12*a^3*b^
4*c + 12*a^4*b^2*c^2 - a^5*c^3)*d^2*e^2 - 4*(a^3*b^5 - 3*a^4*b^3*c + 2*a^5*b*c^2)*d*e^3 + (a^4*b^4 - 2*a^5*b^2
*c + a^6*c^2)*e^4 - 4*(a^7*b*e - (a^6*b^2 - a^7*c)*d)*f^3 + 2*((3*a^4*b^4 - 7*a^5*b^2*c + 3*a^6*c^2)*d^2 - 2*(
3*a^5*b^3 - 4*a^6*b*c)*d*e + (3*a^6*b^2 - a^7*c)*e^2)*f^2 + 4*((a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2 - a^5*c^
3)*d^3 - (3*a^3*b^5 - 9*a^4*b^3*c + 5*a^5*b*c^2)*d^2*e + (3*a^4*b^4 - 6*a^5*b^2*c + a^6*c^2)*d*e^2 - (a^5*b^3
- a^6*b*c)*e^3)*f)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))*log(2*(a^6*c*f^4 + (b^4*c^3 - 3*a*b^2*c^4 + a^
2*c^5)*d^4 - (b^5*c^2 - a*b^3*c^3 - 3*a^2*b*c^4)*d^3*e + 3*(a*b^4*c^2 - 2*a^2*b^2*c^3)*d^2*e^2 - (3*a^2*b^3*c^
2 - 5*a^3*b*c^3)*d*e^3 + (a^3*b^2*c^2 - a^4*c^3)*e^4 - (3*a^5*b*c*e - (3*a^4*b^2*c - 4*a^5*c^2)*d)*f^3 + 3*(a^
4*b^2*c*e^2 + (a^2*b^4*c - 3*a^3*b^2*c^2 + 2*a^4*c^3)*d^2 - (2*a^3*b^3*c - 3*a^4*b*c^2)*d*e)*f^2 + ((b^6*c - 5
*a*b^4*c^2 + 9*a^2*b^2*c^3 - 4*a^3*c^4)*d^3 - 3*(a*b^5*c - 3*a^2*b^3*c^2 + 3*a^3*b*c^3)*d^2*e + 3*(a^2*b^4*c -
a^3*b^2*c^2)*d*e^2 - (a^3*b^3*c + a^4*b*c^2)*e^3)*f)*x + sqrt(1/2)*((b^8 - 8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^
3*b^2*c^3 + 4*a^4*c^4)*d^3 - (3*a*b^7 - 21*a^2*b^5*c + 41*a^3*b^3*c^2 - 20*a^4*b*c^3)*d^2*e + (3*a^2*b^6 - 18*
a^3*b^4*c + 25*a^4*b^2*c^2 - 4*a^5*c^3)*d*e^2 - (a^3*b^5 - 5*a^4*b^3*c + 4*a^5*b*c^2)*e^3 + (a^6*b^2 - 4*a^7*c
)*f^3 + 3*((a^4*b^4 - 5*a^5*b^2*c + 4*a^6*c^2)*d - (a^5*b^3 - 4*a^6*b*c)*e)*f^2 + ((3*a^2*b^6 - 19*a^3*b^4*c +
31*a^4*b^2*c^2 - 12*a^5*c^3)*d^2 - 2*(3*a^3*b^5 - 16*a^4*b^3*c + 16*a^5*b*c^2)*d*e + (3*a^4*b^4 - 13*a^5*b^2*
c + 4*a^6*c^2)*e^2)*f + ((a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*d - (a^6*b^4 - 6*a^7*b^2*c + 8*a^8*c^2)*e + (a
^7*b^3 - 4*a^8*b*c)*f)*sqrt((a^8*f^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^4 - 4*(a
*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d^3*e + 2*(3*a^2*b^6 - 12*a^3*b^4*c + 12*a^4*b^2*c^2 - a^5*c
^3)*d^2*e^2 - 4*(a^3*b^5 - 3*a^4*b^3*c + 2*a^5*b*c^2)*d*e^3 + (a^4*b^4 - 2*a^5*b^2*c + a^6*c^2)*e^4 - 4*(a^7*b
*e - (a^6*b^2 - a^7*c)*d)*f^3 + 2*((3*a^4*b^4 - 7*a^5*b^2*c + 3*a^6*c^2)*d^2 - 2*(3*a^5*b^3 - 4*a^6*b*c)*d*e +
(3*a^6*b^2 - a^7*c)*e^2)*f^2 + 4*((a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2 - a^5*c^3)*d^3 - (3*a^3*b^5 - 9*a^4*
b^3*c + 5*a^5*b*c^2)*d^2*e + (3*a^4*b^4 - 6*a^5*b^2*c + a^6*c^2)*d*e^2 - (a^5*b^3 - a^6*b*c)*e^3)*f)/(a^10*b^2
- 4*a^11*c)))*sqrt(-(a^4*b*f^2 + (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*d^2 - 2*(a*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*d*
e + (a^2*b^3 - 3*a^3*b*c)*e^2 + 2*((a^2*b^3 - 3*a^3*b*c)*d - (a^3*b^2 - 2*a^4*c)*e)*f - (a^5*b^2 - 4*a^6*c)*sq
rt((a^8*f^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^4 - 4*(a*b^7 - 5*a^2*b^5*c + 7*a^
3*b^3*c^2 - 2*a^4*b*c^3)*d^3*e + 2*(3*a^2*b^6 - 12*a^3*b^4*c + 12*a^4*b^2*c^2 - a^5*c^3)*d^2*e^2 - 4*(a^3*b^5
- 3*a^4*b^3*c + 2*a^5*b*c^2)*d*e^3 + (a^4*b^4 - 2*a^5*b^2*c + a^6*c^2)*e^4 - 4*(a^7*b*e - (a^6*b^2 - a^7*c)*d)
*f^3 + 2*((3*a^4*b^4 - 7*a^5*b^2*c + 3*a^6*c^2)*d^2 - 2*(3*a^5*b^3 - 4*a^6*b*c)*d*e + (3*a^6*b^2 - a^7*c)*e^2)
*f^2 + 4*((a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2 - a^5*c^3)*d^3 - (3*a^3*b^5 - 9*a^4*b^3*c + 5*a^5*b*c^2)*d^2*
e + (3*a^4*b^4 - 6*a^5*b^2*c + a^6*c^2)*d*e^2 - (a^5*b^3 - a^6*b*c)*e^3)*f)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 -
4*a^6*c))) - 3*sqrt(1/2)*a^2*x^3*sqrt(-(a^4*b*f^2 + (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*d^2 - 2*(a*b^4 - 4*a^2*b^
2*c + 2*a^3*c^2)*d*e + (a^2*b^3 - 3*a^3*b*c)*e^2 + 2*((a^2*b^3 - 3*a^3*b*c)*d - (a^3*b^2 - 2*a^4*c)*e)*f - (a^
5*b^2 - 4*a^6*c)*sqrt((a^8*f^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^4 - 4*(a*b^7 -
5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d^3*e + 2*(3*a^2*b^6 - 12*a^3*b^4*c + 12*a^4*b^2*c^2 - a^5*c^3)*d^
2*e^2 - 4*(a^3*b^5 - 3*a^4*b^3*c + 2*a^5*b*c^2)*d*e^3 + (a^4*b^4 - 2*a^5*b^2*c + a^6*c^2)*e^4 - 4*(a^7*b*e - (
a^6*b^2 - a^7*c)*d)*f^3 + 2*((3*a^4*b^4 - 7*a^5*b^2*c + 3*a^6*c^2)*d^2 - 2*(3*a^5*b^3 - 4*a^6*b*c)*d*e + (3*a^
6*b^2 - a^7*c)*e^2)*f^2 + 4*((a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2 - a^5*c^3)*d^3 - (3*a^3*b^5 - 9*a^4*b^3*c
+ 5*a^5*b*c^2)*d^2*e + (3*a^4*b^4 - 6*a^5*b^2*c + a^6*c^2)*d*e^2 - (a^5*b^3 - a^6*b*c)*e^3)*f)/(a^10*b^2 - 4*a
^11*c)))/(a^5*b^2 - 4*a^6*c))*log(2*(a^6*c*f^4 + (b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*d^4 - (b^5*c^2 - a*b^3*c^3
- 3*a^2*b*c^4)*d^3*e + 3*(a*b^4*c^2 - 2*a^2*b^2*c^3)*d^2*e^2 - (3*a^2*b^3*c^2 - 5*a^3*b*c^3)*d*e^3 + (a^3*b^2*
c^2 - a^4*c^3)*e^4 - (3*a^5*b*c*e - (3*a^4*b^2*c - 4*a^5*c^2)*d)*f^3 + 3*(a^4*b^2*c*e^2 + (a^2*b^4*c - 3*a^3*b
^2*c^2 + 2*a^4*c^3)*d^2 - (2*a^3*b^3*c - 3*a^4*b*c^2)*d*e)*f^2 + ((b^6*c - 5*a*b^4*c^2 + 9*a^2*b^2*c^3 - 4*a^3
*c^4)*d^3 - 3*(a*b^5*c - 3*a^2*b^3*c^2 + 3*a^3*b*c^3)*d^2*e + 3*(a^2*b^4*c - a^3*b^2*c^2)*d*e^2 - (a^3*b^3*c +
a^4*b*c^2)*e^3)*f)*x - sqrt(1/2)*((b^8 - 8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4)*d^3 - (3*a*
b^7 - 21*a^2*b^5*c + 41*a^3*b^3*c^2 - 20*a^4*b*c^3)*d^2*e + (3*a^2*b^6 - 18*a^3*b^4*c + 25*a^4*b^2*c^2 - 4*a^5
*c^3)*d*e^2 - (a^3*b^5 - 5*a^4*b^3*c + 4*a^5*b*c^2)*e^3 + (a^6*b^2 - 4*a^7*c)*f^3 + 3*((a^4*b^4 - 5*a^5*b^2*c
+ 4*a^6*c^2)*d - (a^5*b^3 - 4*a^6*b*c)*e)*f^2 + ((3*a^2*b^6 - 19*a^3*b^4*c + 31*a^4*b^2*c^2 - 12*a^5*c^3)*d^2
- 2*(3*a^3*b^5 - 16*a^4*b^3*c + 16*a^5*b*c^2)*d*e + (3*a^4*b^4 - 13*a^5*b^2*c + 4*a^6*c^2)*e^2)*f + ((a^5*b^5
- 7*a^6*b^3*c + 12*a^7*b*c^2)*d - (a^6*b^4 - 6*a^7*b^2*c + 8*a^8*c^2)*e + (a^7*b^3 - 4*a^8*b*c)*f)*sqrt((a^8*f
^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^4 - 4*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2
- 2*a^4*b*c^3)*d^3*e + 2*(3*a^2*b^6 - 12*a^3*b^4*c + 12*a^4*b^2*c^2 - a^5*c^3)*d^2*e^2 - 4*(a^3*b^5 - 3*a^4*b
^3*c + 2*a^5*b*c^2)*d*e^3 + (a^4*b^4 - 2*a^5*b^2*c + a^6*c^2)*e^4 - 4*(a^7*b*e - (a^6*b^2 - a^7*c)*d)*f^3 + 2*
((3*a^4*b^4 - 7*a^5*b^2*c + 3*a^6*c^2)*d^2 - 2*(3*a^5*b^3 - 4*a^6*b*c)*d*e + (3*a^6*b^2 - a^7*c)*e^2)*f^2 + 4*
((a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2 - a^5*c^3)*d^3 - (3*a^3*b^5 - 9*a^4*b^3*c + 5*a^5*b*c^2)*d^2*e + (3*a^
4*b^4 - 6*a^5*b^2*c + a^6*c^2)*d*e^2 - (a^5*b^3 - a^6*b*c)*e^3)*f)/(a^10*b^2 - 4*a^11*c)))*sqrt(-(a^4*b*f^2 +
(b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*d^2 - 2*(a*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*d*e + (a^2*b^3 - 3*a^3*b*c)*e^2 + 2*
((a^2*b^3 - 3*a^3*b*c)*d - (a^3*b^2 - 2*a^4*c)*e)*f - (a^5*b^2 - 4*a^6*c)*sqrt((a^8*f^4 + (b^8 - 6*a*b^6*c + 1
1*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^4 - 4*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d^3*e + 2
*(3*a^2*b^6 - 12*a^3*b^4*c + 12*a^4*b^2*c^2 - a^5*c^3)*d^2*e^2 - 4*(a^3*b^5 - 3*a^4*b^3*c + 2*a^5*b*c^2)*d*e^3
+ (a^4*b^4 - 2*a^5*b^2*c + a^6*c^2)*e^4 - 4*(a^7*b*e - (a^6*b^2 - a^7*c)*d)*f^3 + 2*((3*a^4*b^4 - 7*a^5*b^2*c
+ 3*a^6*c^2)*d^2 - 2*(3*a^5*b^3 - 4*a^6*b*c)*d*e + (3*a^6*b^2 - a^7*c)*e^2)*f^2 + 4*((a^2*b^6 - 4*a^3*b^4*c +
4*a^4*b^2*c^2 - a^5*c^3)*d^3 - (3*a^3*b^5 - 9*a^4*b^3*c + 5*a^5*b*c^2)*d^2*e + (3*a^4*b^4 - 6*a^5*b^2*c + a^6
*c^2)*d*e^2 - (a^5*b^3 - a^6*b*c)*e^3)*f)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))) - 6*(b*d - a*e)*x^2 +
2*a*d)/(a^2*x^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x**4+e*x**2+d)/x**4/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^4+e*x^2+d)/x^4/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError