### 3.56 $$\int \frac{x^2 (d+e x^2+f x^4)}{a+b x^2+c x^4} \, dx$$

Optimal. Leaf size=282 $\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (\frac{-b c (c d-3 a f)-2 a c^2 e+b^2 c e+b^3 (-f)}{\sqrt{b^2-4 a c}}-a c f+b^2 f-b c e+c^2 d\right )}{\sqrt{2} c^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (-\frac{-b c (c d-3 a f)-2 a c^2 e+b^2 c e+b^3 (-f)}{\sqrt{b^2-4 a c}}-a c f+b^2 f-b c e+c^2 d\right )}{\sqrt{2} c^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{x (c e-b f)}{c^2}+\frac{f x^3}{3 c}$

[Out]

((c*e - b*f)*x)/c^2 + (f*x^3)/(3*c) + ((c^2*d - b*c*e + b^2*f - a*c*f + (b^2*c*e - 2*a*c^2*e - b^3*f - b*c*(c*
d - 3*a*f))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(5/2)*Sqrt[
b - Sqrt[b^2 - 4*a*c]]) + ((c^2*d - b*c*e + b^2*f - a*c*f - (b^2*c*e - 2*a*c^2*e - b^3*f - b*c*(c*d - 3*a*f))/
Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(5/2)*Sqrt[b + Sqrt[b^2
- 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 3.58969, antiderivative size = 282, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 30, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.1, Rules used = {1664, 1166, 205} $\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (\frac{-b c (c d-3 a f)-2 a c^2 e+b^2 c e+b^3 (-f)}{\sqrt{b^2-4 a c}}-a c f+b^2 f-b c e+c^2 d\right )}{\sqrt{2} c^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (-\frac{-b c (c d-3 a f)-2 a c^2 e+b^2 c e+b^3 (-f)}{\sqrt{b^2-4 a c}}-a c f+b^2 f-b c e+c^2 d\right )}{\sqrt{2} c^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{x (c e-b f)}{c^2}+\frac{f x^3}{3 c}$

Antiderivative was successfully veriﬁed.

[In]

Int[(x^2*(d + e*x^2 + f*x^4))/(a + b*x^2 + c*x^4),x]

[Out]

((c*e - b*f)*x)/c^2 + (f*x^3)/(3*c) + ((c^2*d - b*c*e + b^2*f - a*c*f + (b^2*c*e - 2*a*c^2*e - b^3*f - b*c*(c*
d - 3*a*f))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(5/2)*Sqrt[
b - Sqrt[b^2 - 4*a*c]]) + ((c^2*d - b*c*e + b^2*f - a*c*f - (b^2*c*e - 2*a*c^2*e - b^3*f - b*c*(c*d - 3*a*f))/
Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(5/2)*Sqrt[b + Sqrt[b^2
- 4*a*c]])

Rule 1664

Int[(Pq_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d*x
)^m*Pq*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && PolyQ[Pq, x^2] && IGtQ[p, -2]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^2 \left (d+e x^2+f x^4\right )}{a+b x^2+c x^4} \, dx &=\int \left (\frac{c e-b f}{c^2}+\frac{f x^2}{c}-\frac{a (c e-b f)-\left (c^2 d-b c e+b^2 f-a c f\right ) x^2}{c^2 \left (a+b x^2+c x^4\right )}\right ) \, dx\\ &=\frac{(c e-b f) x}{c^2}+\frac{f x^3}{3 c}-\frac{\int \frac{a (c e-b f)+\left (-c^2 d+b c e-b^2 f+a c f\right ) x^2}{a+b x^2+c x^4} \, dx}{c^2}\\ &=\frac{(c e-b f) x}{c^2}+\frac{f x^3}{3 c}+\frac{\left (c^2 d-b c e+b^2 f-a c f-\frac{b^2 c e-2 a c^2 e-b^3 f-b c (c d-3 a f)}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{2 c^2}+\frac{\left (c^2 d-b c e+b^2 f-a c f+\frac{b^2 c e-2 a c^2 e-b^3 f-b c (c d-3 a f)}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{2 c^2}\\ &=\frac{(c e-b f) x}{c^2}+\frac{f x^3}{3 c}+\frac{\left (c^2 d-b c e+b^2 f-a c f+\frac{b^2 c e-2 a c^2 e-b^3 f-b c (c d-3 a f)}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\left (c^2 d-b c e+b^2 f-a c f-\frac{b^2 c e-2 a c^2 e-b^3 f-b c (c d-3 a f)}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{5/2} \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 0.537855, size = 365, normalized size = 1.29 $\frac{\frac{3 \sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (-b c \left (e \sqrt{b^2-4 a c}-3 a f+c d\right )+c \left (c d \sqrt{b^2-4 a c}-a f \sqrt{b^2-4 a c}-2 a c e\right )+b^2 \left (f \sqrt{b^2-4 a c}+c e\right )+b^3 (-f)\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (b c \left (-e \sqrt{b^2-4 a c}-3 a f+c d\right )+c \left (c d \sqrt{b^2-4 a c}-a f \sqrt{b^2-4 a c}+2 a c e\right )+b^2 \left (f \sqrt{b^2-4 a c}-c e\right )+b^3 f\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}+6 \sqrt{c} x (c e-b f)+2 c^{3/2} f x^3}{6 c^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(x^2*(d + e*x^2 + f*x^4))/(a + b*x^2 + c*x^4),x]

[Out]

(6*Sqrt[c]*(c*e - b*f)*x + 2*c^(3/2)*f*x^3 + (3*Sqrt[2]*(-(b^3*f) - b*c*(c*d + Sqrt[b^2 - 4*a*c]*e - 3*a*f) +
b^2*(c*e + Sqrt[b^2 - 4*a*c]*f) + c*(c*Sqrt[b^2 - 4*a*c]*d - 2*a*c*e - a*Sqrt[b^2 - 4*a*c]*f))*ArcTan[(Sqrt[2]
*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (3*Sqrt[2]*(b^3*f
+ b*c*(c*d - Sqrt[b^2 - 4*a*c]*e - 3*a*f) + b^2*(-(c*e) + Sqrt[b^2 - 4*a*c]*f) + c*(c*Sqrt[b^2 - 4*a*c]*d + 2*
a*c*e - a*Sqrt[b^2 - 4*a*c]*f))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sq
rt[b + Sqrt[b^2 - 4*a*c]]))/(6*c^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.031, size = 1035, normalized size = 3.7 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(f*x^4+e*x^2+d)/(c*x^4+b*x^2+a),x)

[Out]

1/3*f*x^3/c-1/c^2*b*f*x+1/c*e*x+1/2/c*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b
^2)^(1/2)-b)*c)^(1/2))*a*f-1/2/c^2*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)
^(1/2)-b)*c)^(1/2))*b^2*f+1/2/c*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1
/2)-b)*c)^(1/2))*b*e-1/2*d*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b
)*c)^(1/2))-3/2/c/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^
2)^(1/2)-b)*c)^(1/2))*a*b*f+1/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/
(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*a*e+1/2/c^2/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arct
anh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^3*f-1/2/c/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-
b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^2*e+1/2/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a
*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b*d-1/2/c*2^(1/2)/((b+(-4*a*c+
b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*f+1/2/c^2*2^(1/2)/((b+(-4*a*c+b^2)
^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2*f-1/2/c*2^(1/2)/((b+(-4*a*c+b^2)^(1/
2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*e+1/2*d*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)
^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))-3/2/c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^
(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*b*f+1/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-
4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*e+1/2/c^2/(-4*a*c+b^2)^(1/2)
*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^3*f-1/2/c/(-4
*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*
b^2*e+1/2/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2
))*c)^(1/2))*b*d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(f*x^4+e*x^2+d)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 22.0875, size = 18515, normalized size = 65.66 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(f*x^4+e*x^2+d)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

1/6*(2*c*f*x^3 + 3*sqrt(1/2)*c^2*sqrt(-(b*c^4*d^2 - 2*(b^2*c^3 - 2*a*c^4)*d*e + (b^3*c^2 - 3*a*b*c^3)*e^2 + (b
^5 - 5*a*b^3*c + 5*a^2*b*c^2)*f^2 + 2*((b^3*c^2 - 3*a*b*c^3)*d - (b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*e)*f + (b^2
*c^5 - 4*a*c^6)*sqrt((c^8*d^4 - 4*b*c^7*d^3*e + 2*(3*b^2*c^6 - a*c^7)*d^2*e^2 - 4*(b^3*c^5 - a*b*c^6)*d*e^3 +
(b^4*c^4 - 2*a*b^2*c^5 + a^2*c^6)*e^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*f^4 + 4*(
(b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4 - a^3*c^5)*d - (b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4)*e)*f
^3 + 2*((3*b^4*c^4 - 7*a*b^2*c^5 + 3*a^2*c^6)*d^2 - 2*(3*b^5*c^3 - 9*a*b^3*c^4 + 5*a^2*b*c^5)*d*e + (3*b^6*c^2
- 12*a*b^4*c^3 + 12*a^2*b^2*c^4 - a^3*c^5)*e^2)*f^2 + 4*((b^2*c^6 - a*c^7)*d^3 - (3*b^3*c^5 - 4*a*b*c^6)*d^2*
e + (3*b^4*c^4 - 6*a*b^2*c^5 + a^2*c^6)*d*e^2 - (b^5*c^3 - 3*a*b^3*c^4 + 2*a^2*b*c^5)*e^3)*f)/(b^2*c^10 - 4*a*
c^11)))/(b^2*c^5 - 4*a*c^6))*log(2*(c^6*d^4 - 3*b*c^5*d^3*e + 3*b^2*c^4*d^2*e^2 - (b^3*c^3 + a*b*c^4)*d*e^3 +
(a*b^2*c^3 - a^2*c^4)*e^4 + (a^2*b^4 - 3*a^3*b^2*c + a^4*c^2)*f^4 + ((b^6 - 5*a*b^4*c + 9*a^2*b^2*c^2 - 4*a^3*
c^3)*d - (a*b^5 - a^2*b^3*c - 3*a^3*b*c^2)*e)*f^3 + 3*((b^4*c^2 - 3*a*b^2*c^3 + 2*a^2*c^4)*d^2 - (b^5*c - 3*a*
b^3*c^2 + 3*a^2*b*c^3)*d*e + (a*b^4*c - 2*a^2*b^2*c^2)*e^2)*f^2 + ((3*b^2*c^4 - 4*a*c^5)*d^3 - 3*(2*b^3*c^3 -
3*a*b*c^4)*d^2*e + 3*(b^4*c^2 - a*b^2*c^3)*d*e^2 - (3*a*b^3*c^2 - 5*a^2*b*c^3)*e^3)*f)*x + sqrt(1/2)*((b^2*c^5
- 4*a*c^6)*d^2*e - 2*(b^3*c^4 - 4*a*b*c^5)*d*e^2 + (b^4*c^3 - 5*a*b^2*c^4 + 4*a^2*c^5)*e^3 - (b^7 - 7*a*b^5*c
+ 13*a^2*b^3*c^2 - 4*a^3*b*c^3)*f^3 - (2*(b^5*c^2 - 5*a*b^3*c^3 + 4*a^2*b*c^4)*d - (3*b^6*c - 19*a*b^4*c^2 +
29*a^2*b^2*c^3 - 4*a^3*c^4)*e)*f^2 - ((b^3*c^4 - 4*a*b*c^5)*d^2 - 2*(2*b^4*c^3 - 9*a*b^2*c^4 + 4*a^2*c^5)*d*e
+ (3*b^5*c^2 - 17*a*b^3*c^3 + 20*a^2*b*c^4)*e^2)*f + (2*(b^2*c^7 - 4*a*c^8)*d - (b^3*c^6 - 4*a*b*c^7)*e + (b^4
*c^5 - 6*a*b^2*c^6 + 8*a^2*c^7)*f)*sqrt((c^8*d^4 - 4*b*c^7*d^3*e + 2*(3*b^2*c^6 - a*c^7)*d^2*e^2 - 4*(b^3*c^5
- a*b*c^6)*d*e^3 + (b^4*c^4 - 2*a*b^2*c^5 + a^2*c^6)*e^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 +
a^4*c^4)*f^4 + 4*((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4 - a^3*c^5)*d - (b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3
- 2*a^3*b*c^4)*e)*f^3 + 2*((3*b^4*c^4 - 7*a*b^2*c^5 + 3*a^2*c^6)*d^2 - 2*(3*b^5*c^3 - 9*a*b^3*c^4 + 5*a^2*b*c^
5)*d*e + (3*b^6*c^2 - 12*a*b^4*c^3 + 12*a^2*b^2*c^4 - a^3*c^5)*e^2)*f^2 + 4*((b^2*c^6 - a*c^7)*d^3 - (3*b^3*c^
5 - 4*a*b*c^6)*d^2*e + (3*b^4*c^4 - 6*a*b^2*c^5 + a^2*c^6)*d*e^2 - (b^5*c^3 - 3*a*b^3*c^4 + 2*a^2*b*c^5)*e^3)*
f)/(b^2*c^10 - 4*a*c^11)))*sqrt(-(b*c^4*d^2 - 2*(b^2*c^3 - 2*a*c^4)*d*e + (b^3*c^2 - 3*a*b*c^3)*e^2 + (b^5 - 5
*a*b^3*c + 5*a^2*b*c^2)*f^2 + 2*((b^3*c^2 - 3*a*b*c^3)*d - (b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*e)*f + (b^2*c^5 -
4*a*c^6)*sqrt((c^8*d^4 - 4*b*c^7*d^3*e + 2*(3*b^2*c^6 - a*c^7)*d^2*e^2 - 4*(b^3*c^5 - a*b*c^6)*d*e^3 + (b^4*c
^4 - 2*a*b^2*c^5 + a^2*c^6)*e^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*f^4 + 4*((b^6*c
^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4 - a^3*c^5)*d - (b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4)*e)*f^3 + 2
*((3*b^4*c^4 - 7*a*b^2*c^5 + 3*a^2*c^6)*d^2 - 2*(3*b^5*c^3 - 9*a*b^3*c^4 + 5*a^2*b*c^5)*d*e + (3*b^6*c^2 - 12*
a*b^4*c^3 + 12*a^2*b^2*c^4 - a^3*c^5)*e^2)*f^2 + 4*((b^2*c^6 - a*c^7)*d^3 - (3*b^3*c^5 - 4*a*b*c^6)*d^2*e + (3
*b^4*c^4 - 6*a*b^2*c^5 + a^2*c^6)*d*e^2 - (b^5*c^3 - 3*a*b^3*c^4 + 2*a^2*b*c^5)*e^3)*f)/(b^2*c^10 - 4*a*c^11))
)/(b^2*c^5 - 4*a*c^6))) - 3*sqrt(1/2)*c^2*sqrt(-(b*c^4*d^2 - 2*(b^2*c^3 - 2*a*c^4)*d*e + (b^3*c^2 - 3*a*b*c^3)
*e^2 + (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*f^2 + 2*((b^3*c^2 - 3*a*b*c^3)*d - (b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*e)
*f + (b^2*c^5 - 4*a*c^6)*sqrt((c^8*d^4 - 4*b*c^7*d^3*e + 2*(3*b^2*c^6 - a*c^7)*d^2*e^2 - 4*(b^3*c^5 - a*b*c^6)
*d*e^3 + (b^4*c^4 - 2*a*b^2*c^5 + a^2*c^6)*e^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*
f^4 + 4*((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4 - a^3*c^5)*d - (b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*
c^4)*e)*f^3 + 2*((3*b^4*c^4 - 7*a*b^2*c^5 + 3*a^2*c^6)*d^2 - 2*(3*b^5*c^3 - 9*a*b^3*c^4 + 5*a^2*b*c^5)*d*e + (
3*b^6*c^2 - 12*a*b^4*c^3 + 12*a^2*b^2*c^4 - a^3*c^5)*e^2)*f^2 + 4*((b^2*c^6 - a*c^7)*d^3 - (3*b^3*c^5 - 4*a*b*
c^6)*d^2*e + (3*b^4*c^4 - 6*a*b^2*c^5 + a^2*c^6)*d*e^2 - (b^5*c^3 - 3*a*b^3*c^4 + 2*a^2*b*c^5)*e^3)*f)/(b^2*c^
10 - 4*a*c^11)))/(b^2*c^5 - 4*a*c^6))*log(2*(c^6*d^4 - 3*b*c^5*d^3*e + 3*b^2*c^4*d^2*e^2 - (b^3*c^3 + a*b*c^4)
*d*e^3 + (a*b^2*c^3 - a^2*c^4)*e^4 + (a^2*b^4 - 3*a^3*b^2*c + a^4*c^2)*f^4 + ((b^6 - 5*a*b^4*c + 9*a^2*b^2*c^2
- 4*a^3*c^3)*d - (a*b^5 - a^2*b^3*c - 3*a^3*b*c^2)*e)*f^3 + 3*((b^4*c^2 - 3*a*b^2*c^3 + 2*a^2*c^4)*d^2 - (b^5
*c - 3*a*b^3*c^2 + 3*a^2*b*c^3)*d*e + (a*b^4*c - 2*a^2*b^2*c^2)*e^2)*f^2 + ((3*b^2*c^4 - 4*a*c^5)*d^3 - 3*(2*b
^3*c^3 - 3*a*b*c^4)*d^2*e + 3*(b^4*c^2 - a*b^2*c^3)*d*e^2 - (3*a*b^3*c^2 - 5*a^2*b*c^3)*e^3)*f)*x - sqrt(1/2)*
((b^2*c^5 - 4*a*c^6)*d^2*e - 2*(b^3*c^4 - 4*a*b*c^5)*d*e^2 + (b^4*c^3 - 5*a*b^2*c^4 + 4*a^2*c^5)*e^3 - (b^7 -
7*a*b^5*c + 13*a^2*b^3*c^2 - 4*a^3*b*c^3)*f^3 - (2*(b^5*c^2 - 5*a*b^3*c^3 + 4*a^2*b*c^4)*d - (3*b^6*c - 19*a*b
^4*c^2 + 29*a^2*b^2*c^3 - 4*a^3*c^4)*e)*f^2 - ((b^3*c^4 - 4*a*b*c^5)*d^2 - 2*(2*b^4*c^3 - 9*a*b^2*c^4 + 4*a^2*
c^5)*d*e + (3*b^5*c^2 - 17*a*b^3*c^3 + 20*a^2*b*c^4)*e^2)*f + (2*(b^2*c^7 - 4*a*c^8)*d - (b^3*c^6 - 4*a*b*c^7)
*e + (b^4*c^5 - 6*a*b^2*c^6 + 8*a^2*c^7)*f)*sqrt((c^8*d^4 - 4*b*c^7*d^3*e + 2*(3*b^2*c^6 - a*c^7)*d^2*e^2 - 4*
(b^3*c^5 - a*b*c^6)*d*e^3 + (b^4*c^4 - 2*a*b^2*c^5 + a^2*c^6)*e^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*
b^2*c^3 + a^4*c^4)*f^4 + 4*((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4 - a^3*c^5)*d - (b^7*c - 5*a*b^5*c^2 + 7*a^2
*b^3*c^3 - 2*a^3*b*c^4)*e)*f^3 + 2*((3*b^4*c^4 - 7*a*b^2*c^5 + 3*a^2*c^6)*d^2 - 2*(3*b^5*c^3 - 9*a*b^3*c^4 + 5
*a^2*b*c^5)*d*e + (3*b^6*c^2 - 12*a*b^4*c^3 + 12*a^2*b^2*c^4 - a^3*c^5)*e^2)*f^2 + 4*((b^2*c^6 - a*c^7)*d^3 -
(3*b^3*c^5 - 4*a*b*c^6)*d^2*e + (3*b^4*c^4 - 6*a*b^2*c^5 + a^2*c^6)*d*e^2 - (b^5*c^3 - 3*a*b^3*c^4 + 2*a^2*b*c
^5)*e^3)*f)/(b^2*c^10 - 4*a*c^11)))*sqrt(-(b*c^4*d^2 - 2*(b^2*c^3 - 2*a*c^4)*d*e + (b^3*c^2 - 3*a*b*c^3)*e^2 +
(b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*f^2 + 2*((b^3*c^2 - 3*a*b*c^3)*d - (b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)*e)*f + (
b^2*c^5 - 4*a*c^6)*sqrt((c^8*d^4 - 4*b*c^7*d^3*e + 2*(3*b^2*c^6 - a*c^7)*d^2*e^2 - 4*(b^3*c^5 - a*b*c^6)*d*e^3
+ (b^4*c^4 - 2*a*b^2*c^5 + a^2*c^6)*e^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*f^4 +
4*((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4 - a^3*c^5)*d - (b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4)*e
)*f^3 + 2*((3*b^4*c^4 - 7*a*b^2*c^5 + 3*a^2*c^6)*d^2 - 2*(3*b^5*c^3 - 9*a*b^3*c^4 + 5*a^2*b*c^5)*d*e + (3*b^6*
c^2 - 12*a*b^4*c^3 + 12*a^2*b^2*c^4 - a^3*c^5)*e^2)*f^2 + 4*((b^2*c^6 - a*c^7)*d^3 - (3*b^3*c^5 - 4*a*b*c^6)*d
^2*e + (3*b^4*c^4 - 6*a*b^2*c^5 + a^2*c^6)*d*e^2 - (b^5*c^3 - 3*a*b^3*c^4 + 2*a^2*b*c^5)*e^3)*f)/(b^2*c^10 - 4
*a*c^11)))/(b^2*c^5 - 4*a*c^6))) + 3*sqrt(1/2)*c^2*sqrt(-(b*c^4*d^2 - 2*(b^2*c^3 - 2*a*c^4)*d*e + (b^3*c^2 - 3
*a*b*c^3)*e^2 + (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*f^2 + 2*((b^3*c^2 - 3*a*b*c^3)*d - (b^4*c - 4*a*b^2*c^2 + 2*a^
2*c^3)*e)*f - (b^2*c^5 - 4*a*c^6)*sqrt((c^8*d^4 - 4*b*c^7*d^3*e + 2*(3*b^2*c^6 - a*c^7)*d^2*e^2 - 4*(b^3*c^5 -
a*b*c^6)*d*e^3 + (b^4*c^4 - 2*a*b^2*c^5 + a^2*c^6)*e^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 +
a^4*c^4)*f^4 + 4*((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4 - a^3*c^5)*d - (b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 -
2*a^3*b*c^4)*e)*f^3 + 2*((3*b^4*c^4 - 7*a*b^2*c^5 + 3*a^2*c^6)*d^2 - 2*(3*b^5*c^3 - 9*a*b^3*c^4 + 5*a^2*b*c^5
)*d*e + (3*b^6*c^2 - 12*a*b^4*c^3 + 12*a^2*b^2*c^4 - a^3*c^5)*e^2)*f^2 + 4*((b^2*c^6 - a*c^7)*d^3 - (3*b^3*c^5
- 4*a*b*c^6)*d^2*e + (3*b^4*c^4 - 6*a*b^2*c^5 + a^2*c^6)*d*e^2 - (b^5*c^3 - 3*a*b^3*c^4 + 2*a^2*b*c^5)*e^3)*f
)/(b^2*c^10 - 4*a*c^11)))/(b^2*c^5 - 4*a*c^6))*log(2*(c^6*d^4 - 3*b*c^5*d^3*e + 3*b^2*c^4*d^2*e^2 - (b^3*c^3 +
a*b*c^4)*d*e^3 + (a*b^2*c^3 - a^2*c^4)*e^4 + (a^2*b^4 - 3*a^3*b^2*c + a^4*c^2)*f^4 + ((b^6 - 5*a*b^4*c + 9*a^
2*b^2*c^2 - 4*a^3*c^3)*d - (a*b^5 - a^2*b^3*c - 3*a^3*b*c^2)*e)*f^3 + 3*((b^4*c^2 - 3*a*b^2*c^3 + 2*a^2*c^4)*d
^2 - (b^5*c - 3*a*b^3*c^2 + 3*a^2*b*c^3)*d*e + (a*b^4*c - 2*a^2*b^2*c^2)*e^2)*f^2 + ((3*b^2*c^4 - 4*a*c^5)*d^3
- 3*(2*b^3*c^3 - 3*a*b*c^4)*d^2*e + 3*(b^4*c^2 - a*b^2*c^3)*d*e^2 - (3*a*b^3*c^2 - 5*a^2*b*c^3)*e^3)*f)*x + s
qrt(1/2)*((b^2*c^5 - 4*a*c^6)*d^2*e - 2*(b^3*c^4 - 4*a*b*c^5)*d*e^2 + (b^4*c^3 - 5*a*b^2*c^4 + 4*a^2*c^5)*e^3
- (b^7 - 7*a*b^5*c + 13*a^2*b^3*c^2 - 4*a^3*b*c^3)*f^3 - (2*(b^5*c^2 - 5*a*b^3*c^3 + 4*a^2*b*c^4)*d - (3*b^6*c
- 19*a*b^4*c^2 + 29*a^2*b^2*c^3 - 4*a^3*c^4)*e)*f^2 - ((b^3*c^4 - 4*a*b*c^5)*d^2 - 2*(2*b^4*c^3 - 9*a*b^2*c^4
+ 4*a^2*c^5)*d*e + (3*b^5*c^2 - 17*a*b^3*c^3 + 20*a^2*b*c^4)*e^2)*f - (2*(b^2*c^7 - 4*a*c^8)*d - (b^3*c^6 - 4
*a*b*c^7)*e + (b^4*c^5 - 6*a*b^2*c^6 + 8*a^2*c^7)*f)*sqrt((c^8*d^4 - 4*b*c^7*d^3*e + 2*(3*b^2*c^6 - a*c^7)*d^2
*e^2 - 4*(b^3*c^5 - a*b*c^6)*d*e^3 + (b^4*c^4 - 2*a*b^2*c^5 + a^2*c^6)*e^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2
- 6*a^3*b^2*c^3 + a^4*c^4)*f^4 + 4*((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4 - a^3*c^5)*d - (b^7*c - 5*a*b^5*c^
2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4)*e)*f^3 + 2*((3*b^4*c^4 - 7*a*b^2*c^5 + 3*a^2*c^6)*d^2 - 2*(3*b^5*c^3 - 9*a*b^
3*c^4 + 5*a^2*b*c^5)*d*e + (3*b^6*c^2 - 12*a*b^4*c^3 + 12*a^2*b^2*c^4 - a^3*c^5)*e^2)*f^2 + 4*((b^2*c^6 - a*c^
7)*d^3 - (3*b^3*c^5 - 4*a*b*c^6)*d^2*e + (3*b^4*c^4 - 6*a*b^2*c^5 + a^2*c^6)*d*e^2 - (b^5*c^3 - 3*a*b^3*c^4 +
2*a^2*b*c^5)*e^3)*f)/(b^2*c^10 - 4*a*c^11)))*sqrt(-(b*c^4*d^2 - 2*(b^2*c^3 - 2*a*c^4)*d*e + (b^3*c^2 - 3*a*b*c
^3)*e^2 + (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*f^2 + 2*((b^3*c^2 - 3*a*b*c^3)*d - (b^4*c - 4*a*b^2*c^2 + 2*a^2*c^3)
*e)*f - (b^2*c^5 - 4*a*c^6)*sqrt((c^8*d^4 - 4*b*c^7*d^3*e + 2*(3*b^2*c^6 - a*c^7)*d^2*e^2 - 4*(b^3*c^5 - a*b*c
^6)*d*e^3 + (b^4*c^4 - 2*a*b^2*c^5 + a^2*c^6)*e^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^
4)*f^4 + 4*((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4 - a^3*c^5)*d - (b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3
*b*c^4)*e)*f^3 + 2*((3*b^4*c^4 - 7*a*b^2*c^5 + 3*a^2*c^6)*d^2 - 2*(3*b^5*c^3 - 9*a*b^3*c^4 + 5*a^2*b*c^5)*d*e
+ (3*b^6*c^2 - 12*a*b^4*c^3 + 12*a^2*b^2*c^4 - a^3*c^5)*e^2)*f^2 + 4*((b^2*c^6 - a*c^7)*d^3 - (3*b^3*c^5 - 4*a
*b*c^6)*d^2*e + (3*b^4*c^4 - 6*a*b^2*c^5 + a^2*c^6)*d*e^2 - (b^5*c^3 - 3*a*b^3*c^4 + 2*a^2*b*c^5)*e^3)*f)/(b^2
*c^10 - 4*a*c^11)))/(b^2*c^5 - 4*a*c^6))) - 3*sqrt(1/2)*c^2*sqrt(-(b*c^4*d^2 - 2*(b^2*c^3 - 2*a*c^4)*d*e + (b^
3*c^2 - 3*a*b*c^3)*e^2 + (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*f^2 + 2*((b^3*c^2 - 3*a*b*c^3)*d - (b^4*c - 4*a*b^2*c
^2 + 2*a^2*c^3)*e)*f - (b^2*c^5 - 4*a*c^6)*sqrt((c^8*d^4 - 4*b*c^7*d^3*e + 2*(3*b^2*c^6 - a*c^7)*d^2*e^2 - 4*(
b^3*c^5 - a*b*c^6)*d*e^3 + (b^4*c^4 - 2*a*b^2*c^5 + a^2*c^6)*e^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b
^2*c^3 + a^4*c^4)*f^4 + 4*((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4 - a^3*c^5)*d - (b^7*c - 5*a*b^5*c^2 + 7*a^2*
b^3*c^3 - 2*a^3*b*c^4)*e)*f^3 + 2*((3*b^4*c^4 - 7*a*b^2*c^5 + 3*a^2*c^6)*d^2 - 2*(3*b^5*c^3 - 9*a*b^3*c^4 + 5*
a^2*b*c^5)*d*e + (3*b^6*c^2 - 12*a*b^4*c^3 + 12*a^2*b^2*c^4 - a^3*c^5)*e^2)*f^2 + 4*((b^2*c^6 - a*c^7)*d^3 - (
3*b^3*c^5 - 4*a*b*c^6)*d^2*e + (3*b^4*c^4 - 6*a*b^2*c^5 + a^2*c^6)*d*e^2 - (b^5*c^3 - 3*a*b^3*c^4 + 2*a^2*b*c^
5)*e^3)*f)/(b^2*c^10 - 4*a*c^11)))/(b^2*c^5 - 4*a*c^6))*log(2*(c^6*d^4 - 3*b*c^5*d^3*e + 3*b^2*c^4*d^2*e^2 - (
b^3*c^3 + a*b*c^4)*d*e^3 + (a*b^2*c^3 - a^2*c^4)*e^4 + (a^2*b^4 - 3*a^3*b^2*c + a^4*c^2)*f^4 + ((b^6 - 5*a*b^4
*c + 9*a^2*b^2*c^2 - 4*a^3*c^3)*d - (a*b^5 - a^2*b^3*c - 3*a^3*b*c^2)*e)*f^3 + 3*((b^4*c^2 - 3*a*b^2*c^3 + 2*a
^2*c^4)*d^2 - (b^5*c - 3*a*b^3*c^2 + 3*a^2*b*c^3)*d*e + (a*b^4*c - 2*a^2*b^2*c^2)*e^2)*f^2 + ((3*b^2*c^4 - 4*a
*c^5)*d^3 - 3*(2*b^3*c^3 - 3*a*b*c^4)*d^2*e + 3*(b^4*c^2 - a*b^2*c^3)*d*e^2 - (3*a*b^3*c^2 - 5*a^2*b*c^3)*e^3)
*f)*x - sqrt(1/2)*((b^2*c^5 - 4*a*c^6)*d^2*e - 2*(b^3*c^4 - 4*a*b*c^5)*d*e^2 + (b^4*c^3 - 5*a*b^2*c^4 + 4*a^2*
c^5)*e^3 - (b^7 - 7*a*b^5*c + 13*a^2*b^3*c^2 - 4*a^3*b*c^3)*f^3 - (2*(b^5*c^2 - 5*a*b^3*c^3 + 4*a^2*b*c^4)*d -
(3*b^6*c - 19*a*b^4*c^2 + 29*a^2*b^2*c^3 - 4*a^3*c^4)*e)*f^2 - ((b^3*c^4 - 4*a*b*c^5)*d^2 - 2*(2*b^4*c^3 - 9*
a*b^2*c^4 + 4*a^2*c^5)*d*e + (3*b^5*c^2 - 17*a*b^3*c^3 + 20*a^2*b*c^4)*e^2)*f - (2*(b^2*c^7 - 4*a*c^8)*d - (b^
3*c^6 - 4*a*b*c^7)*e + (b^4*c^5 - 6*a*b^2*c^6 + 8*a^2*c^7)*f)*sqrt((c^8*d^4 - 4*b*c^7*d^3*e + 2*(3*b^2*c^6 - a
*c^7)*d^2*e^2 - 4*(b^3*c^5 - a*b*c^6)*d*e^3 + (b^4*c^4 - 2*a*b^2*c^5 + a^2*c^6)*e^4 + (b^8 - 6*a*b^6*c + 11*a^
2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*f^4 + 4*((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4 - a^3*c^5)*d - (b^7*c - 5
*a*b^5*c^2 + 7*a^2*b^3*c^3 - 2*a^3*b*c^4)*e)*f^3 + 2*((3*b^4*c^4 - 7*a*b^2*c^5 + 3*a^2*c^6)*d^2 - 2*(3*b^5*c^3
- 9*a*b^3*c^4 + 5*a^2*b*c^5)*d*e + (3*b^6*c^2 - 12*a*b^4*c^3 + 12*a^2*b^2*c^4 - a^3*c^5)*e^2)*f^2 + 4*((b^2*c
^6 - a*c^7)*d^3 - (3*b^3*c^5 - 4*a*b*c^6)*d^2*e + (3*b^4*c^4 - 6*a*b^2*c^5 + a^2*c^6)*d*e^2 - (b^5*c^3 - 3*a*b
^3*c^4 + 2*a^2*b*c^5)*e^3)*f)/(b^2*c^10 - 4*a*c^11)))*sqrt(-(b*c^4*d^2 - 2*(b^2*c^3 - 2*a*c^4)*d*e + (b^3*c^2
- 3*a*b*c^3)*e^2 + (b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*f^2 + 2*((b^3*c^2 - 3*a*b*c^3)*d - (b^4*c - 4*a*b^2*c^2 + 2
*a^2*c^3)*e)*f - (b^2*c^5 - 4*a*c^6)*sqrt((c^8*d^4 - 4*b*c^7*d^3*e + 2*(3*b^2*c^6 - a*c^7)*d^2*e^2 - 4*(b^3*c^
5 - a*b*c^6)*d*e^3 + (b^4*c^4 - 2*a*b^2*c^5 + a^2*c^6)*e^4 + (b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3
+ a^4*c^4)*f^4 + 4*((b^6*c^2 - 4*a*b^4*c^3 + 4*a^2*b^2*c^4 - a^3*c^5)*d - (b^7*c - 5*a*b^5*c^2 + 7*a^2*b^3*c^
3 - 2*a^3*b*c^4)*e)*f^3 + 2*((3*b^4*c^4 - 7*a*b^2*c^5 + 3*a^2*c^6)*d^2 - 2*(3*b^5*c^3 - 9*a*b^3*c^4 + 5*a^2*b*
c^5)*d*e + (3*b^6*c^2 - 12*a*b^4*c^3 + 12*a^2*b^2*c^4 - a^3*c^5)*e^2)*f^2 + 4*((b^2*c^6 - a*c^7)*d^3 - (3*b^3*
c^5 - 4*a*b*c^6)*d^2*e + (3*b^4*c^4 - 6*a*b^2*c^5 + a^2*c^6)*d*e^2 - (b^5*c^3 - 3*a*b^3*c^4 + 2*a^2*b*c^5)*e^3
)*f)/(b^2*c^10 - 4*a*c^11)))/(b^2*c^5 - 4*a*c^6))) + 6*(c*e - b*f)*x)/c^2

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(f*x**4+e*x**2+d)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(f*x^4+e*x^2+d)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError