### 3.55 $$\int \frac{x^4 (d+e x^2+f x^4)}{a+b x^2+c x^4} \, dx$$

Optimal. Leaf size=369 $\frac{x \left (-c (a f+b e)+b^2 f+c^2 d\right )}{c^3}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (-\frac{-b^2 c (c d-4 a f)-3 a b c^2 e+2 a c^2 (c d-a f)+b^3 c e+b^4 (-f)}{\sqrt{b^2-4 a c}}-b c (c d-2 a f)-a c^2 e+b^2 c e+b^3 (-f)\right )}{\sqrt{2} c^{7/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (\frac{-b^2 c (c d-4 a f)-3 a b c^2 e+2 a c^2 (c d-a f)+b^3 c e+b^4 (-f)}{\sqrt{b^2-4 a c}}-b c (c d-2 a f)-a c^2 e+b^2 c e+b^3 (-f)\right )}{\sqrt{2} c^{7/2} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{x^3 (c e-b f)}{3 c^2}+\frac{f x^5}{5 c}$

[Out]

((c^2*d + b^2*f - c*(b*e + a*f))*x)/c^3 + ((c*e - b*f)*x^3)/(3*c^2) + (f*x^5)/(5*c) + ((b^2*c*e - a*c^2*e - b^
3*f - b*c*(c*d - 2*a*f) - (b^3*c*e - 3*a*b*c^2*e - b^4*f - b^2*c*(c*d - 4*a*f) + 2*a*c^2*(c*d - a*f))/Sqrt[b^2
- 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(7/2)*Sqrt[b - Sqrt[b^2 - 4*a*c
]]) + ((b^2*c*e - a*c^2*e - b^3*f - b*c*(c*d - 2*a*f) + (b^3*c*e - 3*a*b*c^2*e - b^4*f - b^2*c*(c*d - 4*a*f) +
2*a*c^2*(c*d - a*f))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(
7/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 4.57737, antiderivative size = 369, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 30, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.1, Rules used = {1664, 1166, 205} $\frac{x \left (-c (a f+b e)+b^2 f+c^2 d\right )}{c^3}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (-\frac{-b^2 c (c d-4 a f)-3 a b c^2 e+2 a c^2 (c d-a f)+b^3 c e+b^4 (-f)}{\sqrt{b^2-4 a c}}-b c (c d-2 a f)-a c^2 e+b^2 c e+b^3 (-f)\right )}{\sqrt{2} c^{7/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (\frac{-b^2 c (c d-4 a f)-3 a b c^2 e+2 a c^2 (c d-a f)+b^3 c e+b^4 (-f)}{\sqrt{b^2-4 a c}}-b c (c d-2 a f)-a c^2 e+b^2 c e+b^3 (-f)\right )}{\sqrt{2} c^{7/2} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{x^3 (c e-b f)}{3 c^2}+\frac{f x^5}{5 c}$

Antiderivative was successfully veriﬁed.

[In]

Int[(x^4*(d + e*x^2 + f*x^4))/(a + b*x^2 + c*x^4),x]

[Out]

((c^2*d + b^2*f - c*(b*e + a*f))*x)/c^3 + ((c*e - b*f)*x^3)/(3*c^2) + (f*x^5)/(5*c) + ((b^2*c*e - a*c^2*e - b^
3*f - b*c*(c*d - 2*a*f) - (b^3*c*e - 3*a*b*c^2*e - b^4*f - b^2*c*(c*d - 4*a*f) + 2*a*c^2*(c*d - a*f))/Sqrt[b^2
- 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(7/2)*Sqrt[b - Sqrt[b^2 - 4*a*c
]]) + ((b^2*c*e - a*c^2*e - b^3*f - b*c*(c*d - 2*a*f) + (b^3*c*e - 3*a*b*c^2*e - b^4*f - b^2*c*(c*d - 4*a*f) +
2*a*c^2*(c*d - a*f))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(
7/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 1664

Int[(Pq_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d*x
)^m*Pq*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && PolyQ[Pq, x^2] && IGtQ[p, -2]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^4 \left (d+e x^2+f x^4\right )}{a+b x^2+c x^4} \, dx &=\int \left (\frac{c^2 d+b^2 f-c (b e+a f)}{c^3}+\frac{(c e-b f) x^2}{c^2}+\frac{f x^4}{c}-\frac{a \left (c^2 d+b^2 f-c (b e+a f)\right )-\left (b^2 c e-a c^2 e-b^3 f-b c (c d-2 a f)\right ) x^2}{c^3 \left (a+b x^2+c x^4\right )}\right ) \, dx\\ &=\frac{\left (c^2 d+b^2 f-c (b e+a f)\right ) x}{c^3}+\frac{(c e-b f) x^3}{3 c^2}+\frac{f x^5}{5 c}-\frac{\int \frac{a \left (c^2 d+b^2 f-c (b e+a f)\right )+\left (-b^2 c e+a c^2 e+b^3 f+b c (c d-2 a f)\right ) x^2}{a+b x^2+c x^4} \, dx}{c^3}\\ &=\frac{\left (c^2 d+b^2 f-c (b e+a f)\right ) x}{c^3}+\frac{(c e-b f) x^3}{3 c^2}+\frac{f x^5}{5 c}+\frac{\left (b^2 c e-a c^2 e-b^3 f-b c (c d-2 a f)-\frac{b^3 c e-3 a b c^2 e-b^4 f-b^2 c (c d-4 a f)+2 a c^2 (c d-a f)}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{2 c^3}+\frac{\left (b^2 c e-a c^2 e-b^3 f-b c (c d-2 a f)+\frac{b^3 c e-3 a b c^2 e-b^4 f-b^2 c (c d-4 a f)+2 a c^2 (c d-a f)}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{2 c^3}\\ &=\frac{\left (c^2 d+b^2 f-c (b e+a f)\right ) x}{c^3}+\frac{(c e-b f) x^3}{3 c^2}+\frac{f x^5}{5 c}+\frac{\left (b^2 c e-a c^2 e-b^3 f-b c (c d-2 a f)-\frac{b^3 c e-3 a b c^2 e-b^4 f-b^2 c (c d-4 a f)+2 a c^2 (c d-a f)}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{7/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\left (b^2 c e-a c^2 e-b^3 f-b c (c d-2 a f)+\frac{b^3 c e-3 a b c^2 e-b^4 f-b^2 c (c d-4 a f)+2 a c^2 (c d-a f)}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{7/2} \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 0.54579, size = 456, normalized size = 1.24 $\frac{x \left (-c (a f+b e)+b^2 f+c^2 d\right )}{c^3}-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (a c^2 \left (e \sqrt{b^2-4 a c}-2 a f+2 c d\right )-b^2 c \left (e \sqrt{b^2-4 a c}-4 a f+c d\right )+b c \left (c d \sqrt{b^2-4 a c}-2 a f \sqrt{b^2-4 a c}-3 a c e\right )+b^3 \left (f \sqrt{b^2-4 a c}+c e\right )+b^4 (-f)\right )}{\sqrt{2} c^{7/2} \sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (a c^2 \left (e \sqrt{b^2-4 a c}+2 a f-2 c d\right )+b^2 c \left (-e \sqrt{b^2-4 a c}-4 a f+c d\right )+b c \left (c d \sqrt{b^2-4 a c}-2 a f \sqrt{b^2-4 a c}+3 a c e\right )+b^3 \left (f \sqrt{b^2-4 a c}-c e\right )+b^4 f\right )}{\sqrt{2} c^{7/2} \sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{x^3 (c e-b f)}{3 c^2}+\frac{f x^5}{5 c}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(x^4*(d + e*x^2 + f*x^4))/(a + b*x^2 + c*x^4),x]

[Out]

((c^2*d + b^2*f - c*(b*e + a*f))*x)/c^3 + ((c*e - b*f)*x^3)/(3*c^2) + (f*x^5)/(5*c) - ((-(b^4*f) - b^2*c*(c*d
+ Sqrt[b^2 - 4*a*c]*e - 4*a*f) + a*c^2*(2*c*d + Sqrt[b^2 - 4*a*c]*e - 2*a*f) + b^3*(c*e + Sqrt[b^2 - 4*a*c]*f)
+ b*c*(c*Sqrt[b^2 - 4*a*c]*d - 3*a*c*e - 2*a*Sqrt[b^2 - 4*a*c]*f))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b
^2 - 4*a*c]]])/(Sqrt[2]*c^(7/2)*Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - ((b^4*f + b^2*c*(c*d - Sqrt[b
^2 - 4*a*c]*e - 4*a*f) + a*c^2*(-2*c*d + Sqrt[b^2 - 4*a*c]*e + 2*a*f) + b^3*(-(c*e) + Sqrt[b^2 - 4*a*c]*f) + b
*c*(c*Sqrt[b^2 - 4*a*c]*d + 3*a*c*e - 2*a*Sqrt[b^2 - 4*a*c]*f))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 -
4*a*c]]])/(Sqrt[2]*c^(7/2)*Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Maple [B]  time = 0.036, size = 1450, normalized size = 3.9 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(f*x^4+e*x^2+d)/(c*x^4+b*x^2+a),x)

[Out]

1/2/c^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2*e-1/
2/c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*d+1/(-4*a*
c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*d
+1/2/c*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*a*e+1/2/
c^3*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^3*f-1/2/c
^2*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^2*e+1/2/c*
2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b*d+1/(-4*a*c+b
^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*a*d-1
/2/c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*e-1/2/c^3
*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^3*f-1/3/c^2*x
^3*b*f-1/c^2*a*f*x+1/c^3*b^2*f*x-1/c^2*b*e*x+1/c^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)
/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*b*f-1/c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arcta
n(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a^2*f-1/2/c^3/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2
))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^4*f+1/2/c^2/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+
(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^3*e-1/2/c/(-4*a*c+b^2)^(1/
2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2*d-1/c^2*2
^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*a*b*f-1/c/(-4*a*
c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*a^
2*f-1/2/c^3/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/
2)-b)*c)^(1/2))*b^4*f+1/2/c^2/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/
(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^3*e-1/2/c/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arct
anh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^2*d+1/3/c*x^3*e+1/c*d*x+1/5*f*x^5/c+2/c^2/(-4*a*c+b^2)^(1/
2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*a*b^2*f-3/2/
c/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(
1/2))*a*b*e+2/c^2/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b
^2)^(1/2))*c)^(1/2))*a*b^2*f-3/2/c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1
/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*b*e

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{3 \, c^{2} f x^{5} + 5 \,{\left (c^{2} e - b c f\right )} x^{3} + 15 \,{\left (c^{2} d - b c e +{\left (b^{2} - a c\right )} f\right )} x}{15 \, c^{3}} + \frac{-\int \frac{a c^{2} d - a b c e +{\left (b c^{2} d -{\left (b^{2} c - a c^{2}\right )} e +{\left (b^{3} - 2 \, a b c\right )} f\right )} x^{2} +{\left (a b^{2} - a^{2} c\right )} f}{c x^{4} + b x^{2} + a}\,{d x}}{c^{3}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(f*x^4+e*x^2+d)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

1/15*(3*c^2*f*x^5 + 5*(c^2*e - b*c*f)*x^3 + 15*(c^2*d - b*c*e + (b^2 - a*c)*f)*x)/c^3 + integrate(-(a*c^2*d -
a*b*c*e + (b*c^2*d - (b^2*c - a*c^2)*e + (b^3 - 2*a*b*c)*f)*x^2 + (a*b^2 - a^2*c)*f)/(c*x^4 + b*x^2 + a), x)/c
^3

________________________________________________________________________________________

Fricas [B]  time = 100.239, size = 31190, normalized size = 84.53 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(f*x^4+e*x^2+d)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

1/30*(6*c^2*f*x^5 - 15*sqrt(1/2)*c^3*sqrt(-((b^3*c^4 - 3*a*b*c^5)*d^2 - 2*(b^4*c^3 - 4*a*b^2*c^4 + 2*a^2*c^5)*
d*e + (b^5*c^2 - 5*a*b^3*c^3 + 5*a^2*b*c^4)*e^2 + (b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3)*f^2 + 2*((b
^5*c^2 - 5*a*b^3*c^3 + 5*a^2*b*c^4)*d - (b^6*c - 6*a*b^4*c^2 + 9*a^2*b^2*c^3 - 2*a^3*c^4)*e)*f + (b^2*c^7 - 4*
a*c^8)*sqrt(((b^4*c^8 - 2*a*b^2*c^9 + a^2*c^10)*d^4 - 4*(b^5*c^7 - 3*a*b^3*c^8 + 2*a^2*b*c^9)*d^3*e + 2*(3*b^6
*c^6 - 12*a*b^4*c^7 + 12*a^2*b^2*c^8 - a^3*c^9)*d^2*e^2 - 4*(b^7*c^5 - 5*a*b^5*c^6 + 7*a^2*b^3*c^7 - 2*a^3*b*c
^8)*d*e^3 + (b^8*c^4 - 6*a*b^6*c^5 + 11*a^2*b^4*c^6 - 6*a^3*b^2*c^7 + a^4*c^8)*e^4 + (b^12 - 10*a*b^10*c + 37*
a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)*f^4 + 4*((b^10*c^2 - 8*a*b^8*c^3 + 2
2*a^2*b^6*c^4 - 24*a^3*b^4*c^5 + 9*a^4*b^2*c^6 - a^5*c^7)*d - (b^11*c - 9*a*b^9*c^2 + 29*a^2*b^7*c^3 - 40*a^3*
b^5*c^4 + 22*a^4*b^3*c^5 - 3*a^5*b*c^6)*e)*f^3 + 2*((3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 19*a^3*b^2*c^
7 + 3*a^4*c^8)*d^2 - 2*(3*b^9*c^3 - 21*a*b^7*c^4 + 48*a^2*b^5*c^5 - 39*a^3*b^3*c^6 + 8*a^4*b*c^7)*d*e + (3*b^1
0*c^2 - 24*a*b^8*c^3 + 66*a^2*b^6*c^4 - 72*a^3*b^4*c^5 + 27*a^4*b^2*c^6 - a^5*c^7)*e^2)*f^2 + 4*((b^6*c^6 - 4*
a*b^4*c^7 + 4*a^2*b^2*c^8 - a^3*c^9)*d^3 - (3*b^7*c^5 - 15*a*b^5*c^6 + 21*a^2*b^3*c^7 - 7*a^3*b*c^8)*d^2*e + (
3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 18*a^3*b^2*c^7 + a^4*c^8)*d*e^2 - (b^9*c^3 - 7*a*b^7*c^4 + 16*a^2*
b^5*c^5 - 13*a^3*b^3*c^6 + 3*a^4*b*c^7)*e^3)*f)/(b^2*c^14 - 4*a*c^15)))/(b^2*c^7 - 4*a*c^8))*log(-2*((a*b^2*c^
6 - a^2*c^7)*d^4 - (3*a*b^3*c^5 - 5*a^2*b*c^6)*d^3*e + 3*(a*b^4*c^4 - 2*a^2*b^2*c^5)*d^2*e^2 - (a*b^5*c^3 - a^
2*b^3*c^4 - 3*a^3*b*c^5)*d*e^3 + (a^2*b^4*c^3 - 3*a^3*b^2*c^4 + a^4*c^5)*e^4 + (a^3*b^6 - 5*a^4*b^4*c + 6*a^5*
b^2*c^2 - a^6*c^3)*f^4 + ((a*b^8 - 7*a^2*b^6*c + 18*a^3*b^4*c^2 - 19*a^4*b^2*c^3 + 4*a^5*c^4)*d - (a^2*b^7 - 3
*a^3*b^5*c - 2*a^4*b^3*c^2 + 5*a^5*b*c^3)*e)*f^3 + 3*((a*b^6*c^2 - 5*a^2*b^4*c^3 + 7*a^3*b^2*c^4 - 2*a^4*c^5)*
d^2 - (a*b^7*c - 5*a^2*b^5*c^2 + 8*a^3*b^3*c^3 - 5*a^4*b*c^4)*d*e + (a^2*b^6*c - 4*a^3*b^4*c^2 + 3*a^4*b^2*c^3
)*e^2)*f^2 + ((3*a*b^4*c^4 - 9*a^2*b^2*c^5 + 4*a^3*c^6)*d^3 - 3*(2*a*b^5*c^3 - 7*a^2*b^3*c^4 + 5*a^3*b*c^5)*d^
2*e + 3*(a*b^6*c^2 - 3*a^2*b^4*c^3 + a^3*b^2*c^4)*d*e^2 - (3*a^2*b^5*c^2 - 11*a^3*b^3*c^3 + 7*a^4*b*c^4)*e^3)*
f)*x + sqrt(1/2)*((b^4*c^6 - 5*a*b^2*c^7 + 4*a^2*c^8)*d^3 - (3*b^5*c^5 - 17*a*b^3*c^6 + 20*a^2*b*c^7)*d^2*e +
(3*b^6*c^4 - 19*a*b^4*c^5 + 29*a^2*b^2*c^6 - 4*a^3*c^7)*d*e^2 - (b^7*c^3 - 7*a*b^5*c^4 + 13*a^2*b^3*c^5 - 4*a^
3*b*c^6)*e^3 + (b^10 - 10*a*b^8*c + 35*a^2*b^6*c^2 - 51*a^3*b^4*c^3 + 29*a^4*b^2*c^4 - 4*a^5*c^5)*f^3 + ((3*b^
8*c^2 - 25*a*b^6*c^3 + 66*a^2*b^4*c^4 - 59*a^3*b^2*c^5 + 12*a^4*c^6)*d - (3*b^9*c - 27*a*b^7*c^2 + 80*a^2*b^5*
c^3 - 87*a^3*b^3*c^4 + 28*a^4*b*c^5)*e)*f^2 + ((3*b^6*c^4 - 20*a*b^4*c^5 + 35*a^2*b^2*c^6 - 12*a^3*c^7)*d^2 -
2*(3*b^7*c^3 - 22*a*b^5*c^4 + 46*a^2*b^3*c^5 - 24*a^3*b*c^6)*d*e + (3*b^8*c^2 - 24*a*b^6*c^3 + 58*a^2*b^4*c^4
- 41*a^3*b^2*c^5 + 4*a^4*c^6)*e^2)*f - ((b^3*c^9 - 4*a*b*c^10)*d - (b^4*c^8 - 6*a*b^2*c^9 + 8*a^2*c^10)*e + (b
^5*c^7 - 7*a*b^3*c^8 + 12*a^2*b*c^9)*f)*sqrt(((b^4*c^8 - 2*a*b^2*c^9 + a^2*c^10)*d^4 - 4*(b^5*c^7 - 3*a*b^3*c^
8 + 2*a^2*b*c^9)*d^3*e + 2*(3*b^6*c^6 - 12*a*b^4*c^7 + 12*a^2*b^2*c^8 - a^3*c^9)*d^2*e^2 - 4*(b^7*c^5 - 5*a*b^
5*c^6 + 7*a^2*b^3*c^7 - 2*a^3*b*c^8)*d*e^3 + (b^8*c^4 - 6*a*b^6*c^5 + 11*a^2*b^4*c^6 - 6*a^3*b^2*c^7 + a^4*c^8
)*e^4 + (b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)*f^4
+ 4*((b^10*c^2 - 8*a*b^8*c^3 + 22*a^2*b^6*c^4 - 24*a^3*b^4*c^5 + 9*a^4*b^2*c^6 - a^5*c^7)*d - (b^11*c - 9*a*b
^9*c^2 + 29*a^2*b^7*c^3 - 40*a^3*b^5*c^4 + 22*a^4*b^3*c^5 - 3*a^5*b*c^6)*e)*f^3 + 2*((3*b^8*c^4 - 18*a*b^6*c^5
+ 33*a^2*b^4*c^6 - 19*a^3*b^2*c^7 + 3*a^4*c^8)*d^2 - 2*(3*b^9*c^3 - 21*a*b^7*c^4 + 48*a^2*b^5*c^5 - 39*a^3*b^
3*c^6 + 8*a^4*b*c^7)*d*e + (3*b^10*c^2 - 24*a*b^8*c^3 + 66*a^2*b^6*c^4 - 72*a^3*b^4*c^5 + 27*a^4*b^2*c^6 - a^5
*c^7)*e^2)*f^2 + 4*((b^6*c^6 - 4*a*b^4*c^7 + 4*a^2*b^2*c^8 - a^3*c^9)*d^3 - (3*b^7*c^5 - 15*a*b^5*c^6 + 21*a^2
*b^3*c^7 - 7*a^3*b*c^8)*d^2*e + (3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 18*a^3*b^2*c^7 + a^4*c^8)*d*e^2 -
(b^9*c^3 - 7*a*b^7*c^4 + 16*a^2*b^5*c^5 - 13*a^3*b^3*c^6 + 3*a^4*b*c^7)*e^3)*f)/(b^2*c^14 - 4*a*c^15)))*sqrt(
-((b^3*c^4 - 3*a*b*c^5)*d^2 - 2*(b^4*c^3 - 4*a*b^2*c^4 + 2*a^2*c^5)*d*e + (b^5*c^2 - 5*a*b^3*c^3 + 5*a^2*b*c^4
)*e^2 + (b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3)*f^2 + 2*((b^5*c^2 - 5*a*b^3*c^3 + 5*a^2*b*c^4)*d - (b
^6*c - 6*a*b^4*c^2 + 9*a^2*b^2*c^3 - 2*a^3*c^4)*e)*f + (b^2*c^7 - 4*a*c^8)*sqrt(((b^4*c^8 - 2*a*b^2*c^9 + a^2*
c^10)*d^4 - 4*(b^5*c^7 - 3*a*b^3*c^8 + 2*a^2*b*c^9)*d^3*e + 2*(3*b^6*c^6 - 12*a*b^4*c^7 + 12*a^2*b^2*c^8 - a^3
*c^9)*d^2*e^2 - 4*(b^7*c^5 - 5*a*b^5*c^6 + 7*a^2*b^3*c^7 - 2*a^3*b*c^8)*d*e^3 + (b^8*c^4 - 6*a*b^6*c^5 + 11*a^
2*b^4*c^6 - 6*a^3*b^2*c^7 + a^4*c^8)*e^4 + (b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*
c^4 - 12*a^5*b^2*c^5 + a^6*c^6)*f^4 + 4*((b^10*c^2 - 8*a*b^8*c^3 + 22*a^2*b^6*c^4 - 24*a^3*b^4*c^5 + 9*a^4*b^2
*c^6 - a^5*c^7)*d - (b^11*c - 9*a*b^9*c^2 + 29*a^2*b^7*c^3 - 40*a^3*b^5*c^4 + 22*a^4*b^3*c^5 - 3*a^5*b*c^6)*e)
*f^3 + 2*((3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 19*a^3*b^2*c^7 + 3*a^4*c^8)*d^2 - 2*(3*b^9*c^3 - 21*a*b
^7*c^4 + 48*a^2*b^5*c^5 - 39*a^3*b^3*c^6 + 8*a^4*b*c^7)*d*e + (3*b^10*c^2 - 24*a*b^8*c^3 + 66*a^2*b^6*c^4 - 72
*a^3*b^4*c^5 + 27*a^4*b^2*c^6 - a^5*c^7)*e^2)*f^2 + 4*((b^6*c^6 - 4*a*b^4*c^7 + 4*a^2*b^2*c^8 - a^3*c^9)*d^3 -
(3*b^7*c^5 - 15*a*b^5*c^6 + 21*a^2*b^3*c^7 - 7*a^3*b*c^8)*d^2*e + (3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6
- 18*a^3*b^2*c^7 + a^4*c^8)*d*e^2 - (b^9*c^3 - 7*a*b^7*c^4 + 16*a^2*b^5*c^5 - 13*a^3*b^3*c^6 + 3*a^4*b*c^7)*e^
3)*f)/(b^2*c^14 - 4*a*c^15)))/(b^2*c^7 - 4*a*c^8))) + 15*sqrt(1/2)*c^3*sqrt(-((b^3*c^4 - 3*a*b*c^5)*d^2 - 2*(b
^4*c^3 - 4*a*b^2*c^4 + 2*a^2*c^5)*d*e + (b^5*c^2 - 5*a*b^3*c^3 + 5*a^2*b*c^4)*e^2 + (b^7 - 7*a*b^5*c + 14*a^2*
b^3*c^2 - 7*a^3*b*c^3)*f^2 + 2*((b^5*c^2 - 5*a*b^3*c^3 + 5*a^2*b*c^4)*d - (b^6*c - 6*a*b^4*c^2 + 9*a^2*b^2*c^3
- 2*a^3*c^4)*e)*f + (b^2*c^7 - 4*a*c^8)*sqrt(((b^4*c^8 - 2*a*b^2*c^9 + a^2*c^10)*d^4 - 4*(b^5*c^7 - 3*a*b^3*c
^8 + 2*a^2*b*c^9)*d^3*e + 2*(3*b^6*c^6 - 12*a*b^4*c^7 + 12*a^2*b^2*c^8 - a^3*c^9)*d^2*e^2 - 4*(b^7*c^5 - 5*a*b
^5*c^6 + 7*a^2*b^3*c^7 - 2*a^3*b*c^8)*d*e^3 + (b^8*c^4 - 6*a*b^6*c^5 + 11*a^2*b^4*c^6 - 6*a^3*b^2*c^7 + a^4*c^
8)*e^4 + (b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)*f^
4 + 4*((b^10*c^2 - 8*a*b^8*c^3 + 22*a^2*b^6*c^4 - 24*a^3*b^4*c^5 + 9*a^4*b^2*c^6 - a^5*c^7)*d - (b^11*c - 9*a*
b^9*c^2 + 29*a^2*b^7*c^3 - 40*a^3*b^5*c^4 + 22*a^4*b^3*c^5 - 3*a^5*b*c^6)*e)*f^3 + 2*((3*b^8*c^4 - 18*a*b^6*c^
5 + 33*a^2*b^4*c^6 - 19*a^3*b^2*c^7 + 3*a^4*c^8)*d^2 - 2*(3*b^9*c^3 - 21*a*b^7*c^4 + 48*a^2*b^5*c^5 - 39*a^3*b
^3*c^6 + 8*a^4*b*c^7)*d*e + (3*b^10*c^2 - 24*a*b^8*c^3 + 66*a^2*b^6*c^4 - 72*a^3*b^4*c^5 + 27*a^4*b^2*c^6 - a^
5*c^7)*e^2)*f^2 + 4*((b^6*c^6 - 4*a*b^4*c^7 + 4*a^2*b^2*c^8 - a^3*c^9)*d^3 - (3*b^7*c^5 - 15*a*b^5*c^6 + 21*a^
2*b^3*c^7 - 7*a^3*b*c^8)*d^2*e + (3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 18*a^3*b^2*c^7 + a^4*c^8)*d*e^2
- (b^9*c^3 - 7*a*b^7*c^4 + 16*a^2*b^5*c^5 - 13*a^3*b^3*c^6 + 3*a^4*b*c^7)*e^3)*f)/(b^2*c^14 - 4*a*c^15)))/(b^2
*c^7 - 4*a*c^8))*log(-2*((a*b^2*c^6 - a^2*c^7)*d^4 - (3*a*b^3*c^5 - 5*a^2*b*c^6)*d^3*e + 3*(a*b^4*c^4 - 2*a^2*
b^2*c^5)*d^2*e^2 - (a*b^5*c^3 - a^2*b^3*c^4 - 3*a^3*b*c^5)*d*e^3 + (a^2*b^4*c^3 - 3*a^3*b^2*c^4 + a^4*c^5)*e^4
+ (a^3*b^6 - 5*a^4*b^4*c + 6*a^5*b^2*c^2 - a^6*c^3)*f^4 + ((a*b^8 - 7*a^2*b^6*c + 18*a^3*b^4*c^2 - 19*a^4*b^2
*c^3 + 4*a^5*c^4)*d - (a^2*b^7 - 3*a^3*b^5*c - 2*a^4*b^3*c^2 + 5*a^5*b*c^3)*e)*f^3 + 3*((a*b^6*c^2 - 5*a^2*b^4
*c^3 + 7*a^3*b^2*c^4 - 2*a^4*c^5)*d^2 - (a*b^7*c - 5*a^2*b^5*c^2 + 8*a^3*b^3*c^3 - 5*a^4*b*c^4)*d*e + (a^2*b^6
*c - 4*a^3*b^4*c^2 + 3*a^4*b^2*c^3)*e^2)*f^2 + ((3*a*b^4*c^4 - 9*a^2*b^2*c^5 + 4*a^3*c^6)*d^3 - 3*(2*a*b^5*c^3
- 7*a^2*b^3*c^4 + 5*a^3*b*c^5)*d^2*e + 3*(a*b^6*c^2 - 3*a^2*b^4*c^3 + a^3*b^2*c^4)*d*e^2 - (3*a^2*b^5*c^2 - 1
1*a^3*b^3*c^3 + 7*a^4*b*c^4)*e^3)*f)*x - sqrt(1/2)*((b^4*c^6 - 5*a*b^2*c^7 + 4*a^2*c^8)*d^3 - (3*b^5*c^5 - 17*
a*b^3*c^6 + 20*a^2*b*c^7)*d^2*e + (3*b^6*c^4 - 19*a*b^4*c^5 + 29*a^2*b^2*c^6 - 4*a^3*c^7)*d*e^2 - (b^7*c^3 - 7
*a*b^5*c^4 + 13*a^2*b^3*c^5 - 4*a^3*b*c^6)*e^3 + (b^10 - 10*a*b^8*c + 35*a^2*b^6*c^2 - 51*a^3*b^4*c^3 + 29*a^4
*b^2*c^4 - 4*a^5*c^5)*f^3 + ((3*b^8*c^2 - 25*a*b^6*c^3 + 66*a^2*b^4*c^4 - 59*a^3*b^2*c^5 + 12*a^4*c^6)*d - (3*
b^9*c - 27*a*b^7*c^2 + 80*a^2*b^5*c^3 - 87*a^3*b^3*c^4 + 28*a^4*b*c^5)*e)*f^2 + ((3*b^6*c^4 - 20*a*b^4*c^5 + 3
5*a^2*b^2*c^6 - 12*a^3*c^7)*d^2 - 2*(3*b^7*c^3 - 22*a*b^5*c^4 + 46*a^2*b^3*c^5 - 24*a^3*b*c^6)*d*e + (3*b^8*c^
2 - 24*a*b^6*c^3 + 58*a^2*b^4*c^4 - 41*a^3*b^2*c^5 + 4*a^4*c^6)*e^2)*f - ((b^3*c^9 - 4*a*b*c^10)*d - (b^4*c^8
- 6*a*b^2*c^9 + 8*a^2*c^10)*e + (b^5*c^7 - 7*a*b^3*c^8 + 12*a^2*b*c^9)*f)*sqrt(((b^4*c^8 - 2*a*b^2*c^9 + a^2*c
^10)*d^4 - 4*(b^5*c^7 - 3*a*b^3*c^8 + 2*a^2*b*c^9)*d^3*e + 2*(3*b^6*c^6 - 12*a*b^4*c^7 + 12*a^2*b^2*c^8 - a^3*
c^9)*d^2*e^2 - 4*(b^7*c^5 - 5*a*b^5*c^6 + 7*a^2*b^3*c^7 - 2*a^3*b*c^8)*d*e^3 + (b^8*c^4 - 6*a*b^6*c^5 + 11*a^2
*b^4*c^6 - 6*a^3*b^2*c^7 + a^4*c^8)*e^4 + (b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c
^4 - 12*a^5*b^2*c^5 + a^6*c^6)*f^4 + 4*((b^10*c^2 - 8*a*b^8*c^3 + 22*a^2*b^6*c^4 - 24*a^3*b^4*c^5 + 9*a^4*b^2*
c^6 - a^5*c^7)*d - (b^11*c - 9*a*b^9*c^2 + 29*a^2*b^7*c^3 - 40*a^3*b^5*c^4 + 22*a^4*b^3*c^5 - 3*a^5*b*c^6)*e)*
f^3 + 2*((3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 19*a^3*b^2*c^7 + 3*a^4*c^8)*d^2 - 2*(3*b^9*c^3 - 21*a*b^
7*c^4 + 48*a^2*b^5*c^5 - 39*a^3*b^3*c^6 + 8*a^4*b*c^7)*d*e + (3*b^10*c^2 - 24*a*b^8*c^3 + 66*a^2*b^6*c^4 - 72*
a^3*b^4*c^5 + 27*a^4*b^2*c^6 - a^5*c^7)*e^2)*f^2 + 4*((b^6*c^6 - 4*a*b^4*c^7 + 4*a^2*b^2*c^8 - a^3*c^9)*d^3 -
(3*b^7*c^5 - 15*a*b^5*c^6 + 21*a^2*b^3*c^7 - 7*a^3*b*c^8)*d^2*e + (3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 -
18*a^3*b^2*c^7 + a^4*c^8)*d*e^2 - (b^9*c^3 - 7*a*b^7*c^4 + 16*a^2*b^5*c^5 - 13*a^3*b^3*c^6 + 3*a^4*b*c^7)*e^3
)*f)/(b^2*c^14 - 4*a*c^15)))*sqrt(-((b^3*c^4 - 3*a*b*c^5)*d^2 - 2*(b^4*c^3 - 4*a*b^2*c^4 + 2*a^2*c^5)*d*e + (b
^5*c^2 - 5*a*b^3*c^3 + 5*a^2*b*c^4)*e^2 + (b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3)*f^2 + 2*((b^5*c^2 -
5*a*b^3*c^3 + 5*a^2*b*c^4)*d - (b^6*c - 6*a*b^4*c^2 + 9*a^2*b^2*c^3 - 2*a^3*c^4)*e)*f + (b^2*c^7 - 4*a*c^8)*s
qrt(((b^4*c^8 - 2*a*b^2*c^9 + a^2*c^10)*d^4 - 4*(b^5*c^7 - 3*a*b^3*c^8 + 2*a^2*b*c^9)*d^3*e + 2*(3*b^6*c^6 - 1
2*a*b^4*c^7 + 12*a^2*b^2*c^8 - a^3*c^9)*d^2*e^2 - 4*(b^7*c^5 - 5*a*b^5*c^6 + 7*a^2*b^3*c^7 - 2*a^3*b*c^8)*d*e^
3 + (b^8*c^4 - 6*a*b^6*c^5 + 11*a^2*b^4*c^6 - 6*a^3*b^2*c^7 + a^4*c^8)*e^4 + (b^12 - 10*a*b^10*c + 37*a^2*b^8*
c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)*f^4 + 4*((b^10*c^2 - 8*a*b^8*c^3 + 22*a^2*b^
6*c^4 - 24*a^3*b^4*c^5 + 9*a^4*b^2*c^6 - a^5*c^7)*d - (b^11*c - 9*a*b^9*c^2 + 29*a^2*b^7*c^3 - 40*a^3*b^5*c^4
+ 22*a^4*b^3*c^5 - 3*a^5*b*c^6)*e)*f^3 + 2*((3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 19*a^3*b^2*c^7 + 3*a^
4*c^8)*d^2 - 2*(3*b^9*c^3 - 21*a*b^7*c^4 + 48*a^2*b^5*c^5 - 39*a^3*b^3*c^6 + 8*a^4*b*c^7)*d*e + (3*b^10*c^2 -
24*a*b^8*c^3 + 66*a^2*b^6*c^4 - 72*a^3*b^4*c^5 + 27*a^4*b^2*c^6 - a^5*c^7)*e^2)*f^2 + 4*((b^6*c^6 - 4*a*b^4*c^
7 + 4*a^2*b^2*c^8 - a^3*c^9)*d^3 - (3*b^7*c^5 - 15*a*b^5*c^6 + 21*a^2*b^3*c^7 - 7*a^3*b*c^8)*d^2*e + (3*b^8*c^
4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 18*a^3*b^2*c^7 + a^4*c^8)*d*e^2 - (b^9*c^3 - 7*a*b^7*c^4 + 16*a^2*b^5*c^5
- 13*a^3*b^3*c^6 + 3*a^4*b*c^7)*e^3)*f)/(b^2*c^14 - 4*a*c^15)))/(b^2*c^7 - 4*a*c^8))) - 15*sqrt(1/2)*c^3*sqrt(
-((b^3*c^4 - 3*a*b*c^5)*d^2 - 2*(b^4*c^3 - 4*a*b^2*c^4 + 2*a^2*c^5)*d*e + (b^5*c^2 - 5*a*b^3*c^3 + 5*a^2*b*c^4
)*e^2 + (b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3)*f^2 + 2*((b^5*c^2 - 5*a*b^3*c^3 + 5*a^2*b*c^4)*d - (b
^6*c - 6*a*b^4*c^2 + 9*a^2*b^2*c^3 - 2*a^3*c^4)*e)*f - (b^2*c^7 - 4*a*c^8)*sqrt(((b^4*c^8 - 2*a*b^2*c^9 + a^2*
c^10)*d^4 - 4*(b^5*c^7 - 3*a*b^3*c^8 + 2*a^2*b*c^9)*d^3*e + 2*(3*b^6*c^6 - 12*a*b^4*c^7 + 12*a^2*b^2*c^8 - a^3
*c^9)*d^2*e^2 - 4*(b^7*c^5 - 5*a*b^5*c^6 + 7*a^2*b^3*c^7 - 2*a^3*b*c^8)*d*e^3 + (b^8*c^4 - 6*a*b^6*c^5 + 11*a^
2*b^4*c^6 - 6*a^3*b^2*c^7 + a^4*c^8)*e^4 + (b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*
c^4 - 12*a^5*b^2*c^5 + a^6*c^6)*f^4 + 4*((b^10*c^2 - 8*a*b^8*c^3 + 22*a^2*b^6*c^4 - 24*a^3*b^4*c^5 + 9*a^4*b^2
*c^6 - a^5*c^7)*d - (b^11*c - 9*a*b^9*c^2 + 29*a^2*b^7*c^3 - 40*a^3*b^5*c^4 + 22*a^4*b^3*c^5 - 3*a^5*b*c^6)*e)
*f^3 + 2*((3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 19*a^3*b^2*c^7 + 3*a^4*c^8)*d^2 - 2*(3*b^9*c^3 - 21*a*b
^7*c^4 + 48*a^2*b^5*c^5 - 39*a^3*b^3*c^6 + 8*a^4*b*c^7)*d*e + (3*b^10*c^2 - 24*a*b^8*c^3 + 66*a^2*b^6*c^4 - 72
*a^3*b^4*c^5 + 27*a^4*b^2*c^6 - a^5*c^7)*e^2)*f^2 + 4*((b^6*c^6 - 4*a*b^4*c^7 + 4*a^2*b^2*c^8 - a^3*c^9)*d^3 -
(3*b^7*c^5 - 15*a*b^5*c^6 + 21*a^2*b^3*c^7 - 7*a^3*b*c^8)*d^2*e + (3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6
- 18*a^3*b^2*c^7 + a^4*c^8)*d*e^2 - (b^9*c^3 - 7*a*b^7*c^4 + 16*a^2*b^5*c^5 - 13*a^3*b^3*c^6 + 3*a^4*b*c^7)*e^
3)*f)/(b^2*c^14 - 4*a*c^15)))/(b^2*c^7 - 4*a*c^8))*log(-2*((a*b^2*c^6 - a^2*c^7)*d^4 - (3*a*b^3*c^5 - 5*a^2*b*
c^6)*d^3*e + 3*(a*b^4*c^4 - 2*a^2*b^2*c^5)*d^2*e^2 - (a*b^5*c^3 - a^2*b^3*c^4 - 3*a^3*b*c^5)*d*e^3 + (a^2*b^4*
c^3 - 3*a^3*b^2*c^4 + a^4*c^5)*e^4 + (a^3*b^6 - 5*a^4*b^4*c + 6*a^5*b^2*c^2 - a^6*c^3)*f^4 + ((a*b^8 - 7*a^2*b
^6*c + 18*a^3*b^4*c^2 - 19*a^4*b^2*c^3 + 4*a^5*c^4)*d - (a^2*b^7 - 3*a^3*b^5*c - 2*a^4*b^3*c^2 + 5*a^5*b*c^3)*
e)*f^3 + 3*((a*b^6*c^2 - 5*a^2*b^4*c^3 + 7*a^3*b^2*c^4 - 2*a^4*c^5)*d^2 - (a*b^7*c - 5*a^2*b^5*c^2 + 8*a^3*b^3
*c^3 - 5*a^4*b*c^4)*d*e + (a^2*b^6*c - 4*a^3*b^4*c^2 + 3*a^4*b^2*c^3)*e^2)*f^2 + ((3*a*b^4*c^4 - 9*a^2*b^2*c^5
+ 4*a^3*c^6)*d^3 - 3*(2*a*b^5*c^3 - 7*a^2*b^3*c^4 + 5*a^3*b*c^5)*d^2*e + 3*(a*b^6*c^2 - 3*a^2*b^4*c^3 + a^3*b
^2*c^4)*d*e^2 - (3*a^2*b^5*c^2 - 11*a^3*b^3*c^3 + 7*a^4*b*c^4)*e^3)*f)*x + sqrt(1/2)*((b^4*c^6 - 5*a*b^2*c^7 +
4*a^2*c^8)*d^3 - (3*b^5*c^5 - 17*a*b^3*c^6 + 20*a^2*b*c^7)*d^2*e + (3*b^6*c^4 - 19*a*b^4*c^5 + 29*a^2*b^2*c^6
- 4*a^3*c^7)*d*e^2 - (b^7*c^3 - 7*a*b^5*c^4 + 13*a^2*b^3*c^5 - 4*a^3*b*c^6)*e^3 + (b^10 - 10*a*b^8*c + 35*a^2
*b^6*c^2 - 51*a^3*b^4*c^3 + 29*a^4*b^2*c^4 - 4*a^5*c^5)*f^3 + ((3*b^8*c^2 - 25*a*b^6*c^3 + 66*a^2*b^4*c^4 - 59
*a^3*b^2*c^5 + 12*a^4*c^6)*d - (3*b^9*c - 27*a*b^7*c^2 + 80*a^2*b^5*c^3 - 87*a^3*b^3*c^4 + 28*a^4*b*c^5)*e)*f^
2 + ((3*b^6*c^4 - 20*a*b^4*c^5 + 35*a^2*b^2*c^6 - 12*a^3*c^7)*d^2 - 2*(3*b^7*c^3 - 22*a*b^5*c^4 + 46*a^2*b^3*c
^5 - 24*a^3*b*c^6)*d*e + (3*b^8*c^2 - 24*a*b^6*c^3 + 58*a^2*b^4*c^4 - 41*a^3*b^2*c^5 + 4*a^4*c^6)*e^2)*f + ((b
^3*c^9 - 4*a*b*c^10)*d - (b^4*c^8 - 6*a*b^2*c^9 + 8*a^2*c^10)*e + (b^5*c^7 - 7*a*b^3*c^8 + 12*a^2*b*c^9)*f)*sq
rt(((b^4*c^8 - 2*a*b^2*c^9 + a^2*c^10)*d^4 - 4*(b^5*c^7 - 3*a*b^3*c^8 + 2*a^2*b*c^9)*d^3*e + 2*(3*b^6*c^6 - 12
*a*b^4*c^7 + 12*a^2*b^2*c^8 - a^3*c^9)*d^2*e^2 - 4*(b^7*c^5 - 5*a*b^5*c^6 + 7*a^2*b^3*c^7 - 2*a^3*b*c^8)*d*e^3
+ (b^8*c^4 - 6*a*b^6*c^5 + 11*a^2*b^4*c^6 - 6*a^3*b^2*c^7 + a^4*c^8)*e^4 + (b^12 - 10*a*b^10*c + 37*a^2*b^8*c
^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)*f^4 + 4*((b^10*c^2 - 8*a*b^8*c^3 + 22*a^2*b^6
*c^4 - 24*a^3*b^4*c^5 + 9*a^4*b^2*c^6 - a^5*c^7)*d - (b^11*c - 9*a*b^9*c^2 + 29*a^2*b^7*c^3 - 40*a^3*b^5*c^4 +
22*a^4*b^3*c^5 - 3*a^5*b*c^6)*e)*f^3 + 2*((3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 19*a^3*b^2*c^7 + 3*a^4
*c^8)*d^2 - 2*(3*b^9*c^3 - 21*a*b^7*c^4 + 48*a^2*b^5*c^5 - 39*a^3*b^3*c^6 + 8*a^4*b*c^7)*d*e + (3*b^10*c^2 - 2
4*a*b^8*c^3 + 66*a^2*b^6*c^4 - 72*a^3*b^4*c^5 + 27*a^4*b^2*c^6 - a^5*c^7)*e^2)*f^2 + 4*((b^6*c^6 - 4*a*b^4*c^7
+ 4*a^2*b^2*c^8 - a^3*c^9)*d^3 - (3*b^7*c^5 - 15*a*b^5*c^6 + 21*a^2*b^3*c^7 - 7*a^3*b*c^8)*d^2*e + (3*b^8*c^4
- 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 18*a^3*b^2*c^7 + a^4*c^8)*d*e^2 - (b^9*c^3 - 7*a*b^7*c^4 + 16*a^2*b^5*c^5 -
13*a^3*b^3*c^6 + 3*a^4*b*c^7)*e^3)*f)/(b^2*c^14 - 4*a*c^15)))*sqrt(-((b^3*c^4 - 3*a*b*c^5)*d^2 - 2*(b^4*c^3 -
4*a*b^2*c^4 + 2*a^2*c^5)*d*e + (b^5*c^2 - 5*a*b^3*c^3 + 5*a^2*b*c^4)*e^2 + (b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2
- 7*a^3*b*c^3)*f^2 + 2*((b^5*c^2 - 5*a*b^3*c^3 + 5*a^2*b*c^4)*d - (b^6*c - 6*a*b^4*c^2 + 9*a^2*b^2*c^3 - 2*a^3
*c^4)*e)*f - (b^2*c^7 - 4*a*c^8)*sqrt(((b^4*c^8 - 2*a*b^2*c^9 + a^2*c^10)*d^4 - 4*(b^5*c^7 - 3*a*b^3*c^8 + 2*a
^2*b*c^9)*d^3*e + 2*(3*b^6*c^6 - 12*a*b^4*c^7 + 12*a^2*b^2*c^8 - a^3*c^9)*d^2*e^2 - 4*(b^7*c^5 - 5*a*b^5*c^6 +
7*a^2*b^3*c^7 - 2*a^3*b*c^8)*d*e^3 + (b^8*c^4 - 6*a*b^6*c^5 + 11*a^2*b^4*c^6 - 6*a^3*b^2*c^7 + a^4*c^8)*e^4 +
(b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)*f^4 + 4*((
b^10*c^2 - 8*a*b^8*c^3 + 22*a^2*b^6*c^4 - 24*a^3*b^4*c^5 + 9*a^4*b^2*c^6 - a^5*c^7)*d - (b^11*c - 9*a*b^9*c^2
+ 29*a^2*b^7*c^3 - 40*a^3*b^5*c^4 + 22*a^4*b^3*c^5 - 3*a^5*b*c^6)*e)*f^3 + 2*((3*b^8*c^4 - 18*a*b^6*c^5 + 33*a
^2*b^4*c^6 - 19*a^3*b^2*c^7 + 3*a^4*c^8)*d^2 - 2*(3*b^9*c^3 - 21*a*b^7*c^4 + 48*a^2*b^5*c^5 - 39*a^3*b^3*c^6 +
8*a^4*b*c^7)*d*e + (3*b^10*c^2 - 24*a*b^8*c^3 + 66*a^2*b^6*c^4 - 72*a^3*b^4*c^5 + 27*a^4*b^2*c^6 - a^5*c^7)*e
^2)*f^2 + 4*((b^6*c^6 - 4*a*b^4*c^7 + 4*a^2*b^2*c^8 - a^3*c^9)*d^3 - (3*b^7*c^5 - 15*a*b^5*c^6 + 21*a^2*b^3*c^
7 - 7*a^3*b*c^8)*d^2*e + (3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 18*a^3*b^2*c^7 + a^4*c^8)*d*e^2 - (b^9*c
^3 - 7*a*b^7*c^4 + 16*a^2*b^5*c^5 - 13*a^3*b^3*c^6 + 3*a^4*b*c^7)*e^3)*f)/(b^2*c^14 - 4*a*c^15)))/(b^2*c^7 - 4
*a*c^8))) + 15*sqrt(1/2)*c^3*sqrt(-((b^3*c^4 - 3*a*b*c^5)*d^2 - 2*(b^4*c^3 - 4*a*b^2*c^4 + 2*a^2*c^5)*d*e + (b
^5*c^2 - 5*a*b^3*c^3 + 5*a^2*b*c^4)*e^2 + (b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3)*f^2 + 2*((b^5*c^2 -
5*a*b^3*c^3 + 5*a^2*b*c^4)*d - (b^6*c - 6*a*b^4*c^2 + 9*a^2*b^2*c^3 - 2*a^3*c^4)*e)*f - (b^2*c^7 - 4*a*c^8)*s
qrt(((b^4*c^8 - 2*a*b^2*c^9 + a^2*c^10)*d^4 - 4*(b^5*c^7 - 3*a*b^3*c^8 + 2*a^2*b*c^9)*d^3*e + 2*(3*b^6*c^6 - 1
2*a*b^4*c^7 + 12*a^2*b^2*c^8 - a^3*c^9)*d^2*e^2 - 4*(b^7*c^5 - 5*a*b^5*c^6 + 7*a^2*b^3*c^7 - 2*a^3*b*c^8)*d*e^
3 + (b^8*c^4 - 6*a*b^6*c^5 + 11*a^2*b^4*c^6 - 6*a^3*b^2*c^7 + a^4*c^8)*e^4 + (b^12 - 10*a*b^10*c + 37*a^2*b^8*
c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)*f^4 + 4*((b^10*c^2 - 8*a*b^8*c^3 + 22*a^2*b^
6*c^4 - 24*a^3*b^4*c^5 + 9*a^4*b^2*c^6 - a^5*c^7)*d - (b^11*c - 9*a*b^9*c^2 + 29*a^2*b^7*c^3 - 40*a^3*b^5*c^4
+ 22*a^4*b^3*c^5 - 3*a^5*b*c^6)*e)*f^3 + 2*((3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 19*a^3*b^2*c^7 + 3*a^
4*c^8)*d^2 - 2*(3*b^9*c^3 - 21*a*b^7*c^4 + 48*a^2*b^5*c^5 - 39*a^3*b^3*c^6 + 8*a^4*b*c^7)*d*e + (3*b^10*c^2 -
24*a*b^8*c^3 + 66*a^2*b^6*c^4 - 72*a^3*b^4*c^5 + 27*a^4*b^2*c^6 - a^5*c^7)*e^2)*f^2 + 4*((b^6*c^6 - 4*a*b^4*c^
7 + 4*a^2*b^2*c^8 - a^3*c^9)*d^3 - (3*b^7*c^5 - 15*a*b^5*c^6 + 21*a^2*b^3*c^7 - 7*a^3*b*c^8)*d^2*e + (3*b^8*c^
4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 18*a^3*b^2*c^7 + a^4*c^8)*d*e^2 - (b^9*c^3 - 7*a*b^7*c^4 + 16*a^2*b^5*c^5
- 13*a^3*b^3*c^6 + 3*a^4*b*c^7)*e^3)*f)/(b^2*c^14 - 4*a*c^15)))/(b^2*c^7 - 4*a*c^8))*log(-2*((a*b^2*c^6 - a^2*
c^7)*d^4 - (3*a*b^3*c^5 - 5*a^2*b*c^6)*d^3*e + 3*(a*b^4*c^4 - 2*a^2*b^2*c^5)*d^2*e^2 - (a*b^5*c^3 - a^2*b^3*c^
4 - 3*a^3*b*c^5)*d*e^3 + (a^2*b^4*c^3 - 3*a^3*b^2*c^4 + a^4*c^5)*e^4 + (a^3*b^6 - 5*a^4*b^4*c + 6*a^5*b^2*c^2
- a^6*c^3)*f^4 + ((a*b^8 - 7*a^2*b^6*c + 18*a^3*b^4*c^2 - 19*a^4*b^2*c^3 + 4*a^5*c^4)*d - (a^2*b^7 - 3*a^3*b^5
*c - 2*a^4*b^3*c^2 + 5*a^5*b*c^3)*e)*f^3 + 3*((a*b^6*c^2 - 5*a^2*b^4*c^3 + 7*a^3*b^2*c^4 - 2*a^4*c^5)*d^2 - (a
*b^7*c - 5*a^2*b^5*c^2 + 8*a^3*b^3*c^3 - 5*a^4*b*c^4)*d*e + (a^2*b^6*c - 4*a^3*b^4*c^2 + 3*a^4*b^2*c^3)*e^2)*f
^2 + ((3*a*b^4*c^4 - 9*a^2*b^2*c^5 + 4*a^3*c^6)*d^3 - 3*(2*a*b^5*c^3 - 7*a^2*b^3*c^4 + 5*a^3*b*c^5)*d^2*e + 3*
(a*b^6*c^2 - 3*a^2*b^4*c^3 + a^3*b^2*c^4)*d*e^2 - (3*a^2*b^5*c^2 - 11*a^3*b^3*c^3 + 7*a^4*b*c^4)*e^3)*f)*x - s
qrt(1/2)*((b^4*c^6 - 5*a*b^2*c^7 + 4*a^2*c^8)*d^3 - (3*b^5*c^5 - 17*a*b^3*c^6 + 20*a^2*b*c^7)*d^2*e + (3*b^6*c
^4 - 19*a*b^4*c^5 + 29*a^2*b^2*c^6 - 4*a^3*c^7)*d*e^2 - (b^7*c^3 - 7*a*b^5*c^4 + 13*a^2*b^3*c^5 - 4*a^3*b*c^6)
*e^3 + (b^10 - 10*a*b^8*c + 35*a^2*b^6*c^2 - 51*a^3*b^4*c^3 + 29*a^4*b^2*c^4 - 4*a^5*c^5)*f^3 + ((3*b^8*c^2 -
25*a*b^6*c^3 + 66*a^2*b^4*c^4 - 59*a^3*b^2*c^5 + 12*a^4*c^6)*d - (3*b^9*c - 27*a*b^7*c^2 + 80*a^2*b^5*c^3 - 87
*a^3*b^3*c^4 + 28*a^4*b*c^5)*e)*f^2 + ((3*b^6*c^4 - 20*a*b^4*c^5 + 35*a^2*b^2*c^6 - 12*a^3*c^7)*d^2 - 2*(3*b^7
*c^3 - 22*a*b^5*c^4 + 46*a^2*b^3*c^5 - 24*a^3*b*c^6)*d*e + (3*b^8*c^2 - 24*a*b^6*c^3 + 58*a^2*b^4*c^4 - 41*a^3
*b^2*c^5 + 4*a^4*c^6)*e^2)*f + ((b^3*c^9 - 4*a*b*c^10)*d - (b^4*c^8 - 6*a*b^2*c^9 + 8*a^2*c^10)*e + (b^5*c^7 -
7*a*b^3*c^8 + 12*a^2*b*c^9)*f)*sqrt(((b^4*c^8 - 2*a*b^2*c^9 + a^2*c^10)*d^4 - 4*(b^5*c^7 - 3*a*b^3*c^8 + 2*a^
2*b*c^9)*d^3*e + 2*(3*b^6*c^6 - 12*a*b^4*c^7 + 12*a^2*b^2*c^8 - a^3*c^9)*d^2*e^2 - 4*(b^7*c^5 - 5*a*b^5*c^6 +
7*a^2*b^3*c^7 - 2*a^3*b*c^8)*d*e^3 + (b^8*c^4 - 6*a*b^6*c^5 + 11*a^2*b^4*c^6 - 6*a^3*b^2*c^7 + a^4*c^8)*e^4 +
(b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)*f^4 + 4*((b
^10*c^2 - 8*a*b^8*c^3 + 22*a^2*b^6*c^4 - 24*a^3*b^4*c^5 + 9*a^4*b^2*c^6 - a^5*c^7)*d - (b^11*c - 9*a*b^9*c^2 +
29*a^2*b^7*c^3 - 40*a^3*b^5*c^4 + 22*a^4*b^3*c^5 - 3*a^5*b*c^6)*e)*f^3 + 2*((3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^
2*b^4*c^6 - 19*a^3*b^2*c^7 + 3*a^4*c^8)*d^2 - 2*(3*b^9*c^3 - 21*a*b^7*c^4 + 48*a^2*b^5*c^5 - 39*a^3*b^3*c^6 +
8*a^4*b*c^7)*d*e + (3*b^10*c^2 - 24*a*b^8*c^3 + 66*a^2*b^6*c^4 - 72*a^3*b^4*c^5 + 27*a^4*b^2*c^6 - a^5*c^7)*e^
2)*f^2 + 4*((b^6*c^6 - 4*a*b^4*c^7 + 4*a^2*b^2*c^8 - a^3*c^9)*d^3 - (3*b^7*c^5 - 15*a*b^5*c^6 + 21*a^2*b^3*c^7
- 7*a^3*b*c^8)*d^2*e + (3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 18*a^3*b^2*c^7 + a^4*c^8)*d*e^2 - (b^9*c^
3 - 7*a*b^7*c^4 + 16*a^2*b^5*c^5 - 13*a^3*b^3*c^6 + 3*a^4*b*c^7)*e^3)*f)/(b^2*c^14 - 4*a*c^15)))*sqrt(-((b^3*c
^4 - 3*a*b*c^5)*d^2 - 2*(b^4*c^3 - 4*a*b^2*c^4 + 2*a^2*c^5)*d*e + (b^5*c^2 - 5*a*b^3*c^3 + 5*a^2*b*c^4)*e^2 +
(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3)*f^2 + 2*((b^5*c^2 - 5*a*b^3*c^3 + 5*a^2*b*c^4)*d - (b^6*c - 6
*a*b^4*c^2 + 9*a^2*b^2*c^3 - 2*a^3*c^4)*e)*f - (b^2*c^7 - 4*a*c^8)*sqrt(((b^4*c^8 - 2*a*b^2*c^9 + a^2*c^10)*d^
4 - 4*(b^5*c^7 - 3*a*b^3*c^8 + 2*a^2*b*c^9)*d^3*e + 2*(3*b^6*c^6 - 12*a*b^4*c^7 + 12*a^2*b^2*c^8 - a^3*c^9)*d^
2*e^2 - 4*(b^7*c^5 - 5*a*b^5*c^6 + 7*a^2*b^3*c^7 - 2*a^3*b*c^8)*d*e^3 + (b^8*c^4 - 6*a*b^6*c^5 + 11*a^2*b^4*c^
6 - 6*a^3*b^2*c^7 + a^4*c^8)*e^4 + (b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12
*a^5*b^2*c^5 + a^6*c^6)*f^4 + 4*((b^10*c^2 - 8*a*b^8*c^3 + 22*a^2*b^6*c^4 - 24*a^3*b^4*c^5 + 9*a^4*b^2*c^6 - a
^5*c^7)*d - (b^11*c - 9*a*b^9*c^2 + 29*a^2*b^7*c^3 - 40*a^3*b^5*c^4 + 22*a^4*b^3*c^5 - 3*a^5*b*c^6)*e)*f^3 + 2
*((3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 19*a^3*b^2*c^7 + 3*a^4*c^8)*d^2 - 2*(3*b^9*c^3 - 21*a*b^7*c^4 +
48*a^2*b^5*c^5 - 39*a^3*b^3*c^6 + 8*a^4*b*c^7)*d*e + (3*b^10*c^2 - 24*a*b^8*c^3 + 66*a^2*b^6*c^4 - 72*a^3*b^4
*c^5 + 27*a^4*b^2*c^6 - a^5*c^7)*e^2)*f^2 + 4*((b^6*c^6 - 4*a*b^4*c^7 + 4*a^2*b^2*c^8 - a^3*c^9)*d^3 - (3*b^7*
c^5 - 15*a*b^5*c^6 + 21*a^2*b^3*c^7 - 7*a^3*b*c^8)*d^2*e + (3*b^8*c^4 - 18*a*b^6*c^5 + 33*a^2*b^4*c^6 - 18*a^3
*b^2*c^7 + a^4*c^8)*d*e^2 - (b^9*c^3 - 7*a*b^7*c^4 + 16*a^2*b^5*c^5 - 13*a^3*b^3*c^6 + 3*a^4*b*c^7)*e^3)*f)/(b
^2*c^14 - 4*a*c^15)))/(b^2*c^7 - 4*a*c^8))) + 10*(c^2*e - b*c*f)*x^3 + 30*(c^2*d - b*c*e + (b^2 - a*c)*f)*x)/c
^3

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(f*x**4+e*x**2+d)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(f*x^4+e*x^2+d)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError