### 3.26 $$\int \frac{A+B x+C x^2}{x (a+b x^2+c x^4)} \, dx$$

Optimal. Leaf size=229 $\frac{(A b-2 a C) \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{2 a \sqrt{b^2-4 a c}}-\frac{A \log \left (a+b x^2+c x^4\right )}{4 a}+\frac{A \log (x)}{a}+\frac{\sqrt{2} B \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{2} B \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}$

[Out]

(Sqrt[2]*B*Sqrt[c]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b
^2 - 4*a*c]]) - (Sqrt[2]*B*Sqrt[c]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]
*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + ((A*b - 2*a*C)*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(2*a*Sqrt[b^2 - 4*a*c
]) + (A*Log[x])/a - (A*Log[a + b*x^2 + c*x^4])/(4*a)

________________________________________________________________________________________

Rubi [A]  time = 0.259478, antiderivative size = 229, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 10, integrand size = 28, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.357, Rules used = {1662, 1251, 800, 634, 618, 206, 628, 12, 1093, 205} $\frac{(A b-2 a C) \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{2 a \sqrt{b^2-4 a c}}-\frac{A \log \left (a+b x^2+c x^4\right )}{4 a}+\frac{A \log (x)}{a}+\frac{\sqrt{2} B \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{2} B \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(A + B*x + C*x^2)/(x*(a + b*x^2 + c*x^4)),x]

[Out]

(Sqrt[2]*B*Sqrt[c]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b
^2 - 4*a*c]]) - (Sqrt[2]*B*Sqrt[c]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]
*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + ((A*b - 2*a*C)*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(2*a*Sqrt[b^2 - 4*a*c
]) + (A*Log[x])/a - (A*Log[a + b*x^2 + c*x^4])/(4*a)

Rule 1662

Int[(Pq_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x],
k}, Int[(d*x)^m*Sum[Coeff[Pq, x, 2*k]*x^(2*k), {k, 0, q/2 + 1}]*(a + b*x^2 + c*x^4)^p, x] + Dist[1/d, Int[(d*
x)^(m + 1)*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0, (q - 1)/2 + 1}]*(a + b*x^2 + c*x^4)^p, x], x]] /; FreeQ[{
a, b, c, d, m, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
IntegerQ[(m - 1)/2]

Rule 800

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[Exp
andIntegrand[((d + e*x)^m*(f + g*x))/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 -
4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[m]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1093

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, Int[1/(b/
2 - q/2 + c*x^2), x], x] - Dist[c/q, Int[1/(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*
a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{A+B x+C x^2}{x \left (a+b x^2+c x^4\right )} \, dx &=\int \frac{B}{a+b x^2+c x^4} \, dx+\int \frac{A+C x^2}{x \left (a+b x^2+c x^4\right )} \, dx\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{A+C x}{x \left (a+b x+c x^2\right )} \, dx,x,x^2\right )+B \int \frac{1}{a+b x^2+c x^4} \, dx\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \left (\frac{A}{a x}+\frac{-A b+a C-A c x}{a \left (a+b x+c x^2\right )}\right ) \, dx,x,x^2\right )+\frac{(B c) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{\sqrt{b^2-4 a c}}-\frac{(B c) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{\sqrt{b^2-4 a c}}\\ &=\frac{\sqrt{2} B \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{2} B \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b+\sqrt{b^2-4 a c}}}+\frac{A \log (x)}{a}+\frac{\operatorname{Subst}\left (\int \frac{-A b+a C-A c x}{a+b x+c x^2} \, dx,x,x^2\right )}{2 a}\\ &=\frac{\sqrt{2} B \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{2} B \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b+\sqrt{b^2-4 a c}}}+\frac{A \log (x)}{a}-\frac{A \operatorname{Subst}\left (\int \frac{b+2 c x}{a+b x+c x^2} \, dx,x,x^2\right )}{4 a}+\frac{(-A b+2 a C) \operatorname{Subst}\left (\int \frac{1}{a+b x+c x^2} \, dx,x,x^2\right )}{4 a}\\ &=\frac{\sqrt{2} B \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{2} B \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b+\sqrt{b^2-4 a c}}}+\frac{A \log (x)}{a}-\frac{A \log \left (a+b x^2+c x^4\right )}{4 a}-\frac{(-A b+2 a C) \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{2 a}\\ &=\frac{\sqrt{2} B \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{2} B \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b+\sqrt{b^2-4 a c}}}+\frac{(A b-2 a C) \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{2 a \sqrt{b^2-4 a c}}+\frac{A \log (x)}{a}-\frac{A \log \left (a+b x^2+c x^4\right )}{4 a}\\ \end{align*}

Mathematica [A]  time = 0.468039, size = 285, normalized size = 1.24 $-\frac{\left (A \left (\sqrt{b^2-4 a c}+b\right )-2 a C\right ) \log \left (\sqrt{b^2-4 a c}-b-2 c x^2\right )}{4 a \sqrt{b^2-4 a c}}-\frac{\left (A \left (\sqrt{b^2-4 a c}-b\right )+2 a C\right ) \log \left (\sqrt{b^2-4 a c}+b+2 c x^2\right )}{4 a \sqrt{b^2-4 a c}}+\frac{A \log (x)}{a}+\frac{\sqrt{2} B \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{2} B \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(A + B*x + C*x^2)/(x*(a + b*x^2 + c*x^4)),x]

[Out]

(Sqrt[2]*B*Sqrt[c]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b
^2 - 4*a*c]]) - (Sqrt[2]*B*Sqrt[c]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]
*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + (A*Log[x])/a - ((A*(b + Sqrt[b^2 - 4*a*c]) - 2*a*C)*Log[-b + Sqrt[b^2 - 4*a*c]
- 2*c*x^2])/(4*a*Sqrt[b^2 - 4*a*c]) - ((A*(-b + Sqrt[b^2 - 4*a*c]) + 2*a*C)*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x
^2])/(4*a*Sqrt[b^2 - 4*a*c])

________________________________________________________________________________________

Maple [B]  time = 0.027, size = 488, normalized size = 2.1 \begin{align*}{\frac{A\ln \left ( x \right ) }{a}}-4\,{\frac{c\ln \left ( -2\,c{x}^{2}+\sqrt{-4\,ac+{b}^{2}}-b \right ) A}{16\,ac-4\,{b}^{2}}}+{\frac{A{b}^{2}}{a \left ( 16\,ac-4\,{b}^{2} \right ) }\ln \left ( -2\,c{x}^{2}+\sqrt{-4\,ac+{b}^{2}}-b \right ) }+{\frac{Ab}{a \left ( 16\,ac-4\,{b}^{2} \right ) }\sqrt{-4\,ac+{b}^{2}}\ln \left ( -2\,c{x}^{2}+\sqrt{-4\,ac+{b}^{2}}-b \right ) }-2\,{\frac{\sqrt{-4\,ac+{b}^{2}}\ln \left ( -2\,c{x}^{2}+\sqrt{-4\,ac+{b}^{2}}-b \right ) C}{16\,ac-4\,{b}^{2}}}+4\,{\frac{c\sqrt{-4\,ac+{b}^{2}}B\sqrt{2}}{ \left ( 16\,ac-4\,{b}^{2} \right ) \sqrt{ \left ( \sqrt{-4\,ac+{b}^{2}}-b \right ) c}}{\it Artanh} \left ({\frac{cx\sqrt{2}}{\sqrt{ \left ( \sqrt{-4\,ac+{b}^{2}}-b \right ) c}}} \right ) }-4\,{\frac{c\ln \left ( 2\,c{x}^{2}+\sqrt{-4\,ac+{b}^{2}}+b \right ) A}{16\,ac-4\,{b}^{2}}}+{\frac{A{b}^{2}}{a \left ( 16\,ac-4\,{b}^{2} \right ) }\ln \left ( 2\,c{x}^{2}+\sqrt{-4\,ac+{b}^{2}}+b \right ) }-{\frac{Ab}{a \left ( 16\,ac-4\,{b}^{2} \right ) }\sqrt{-4\,ac+{b}^{2}}\ln \left ( 2\,c{x}^{2}+\sqrt{-4\,ac+{b}^{2}}+b \right ) }+2\,{\frac{\sqrt{-4\,ac+{b}^{2}}\ln \left ( 2\,c{x}^{2}+\sqrt{-4\,ac+{b}^{2}}+b \right ) C}{16\,ac-4\,{b}^{2}}}+4\,{\frac{c\sqrt{-4\,ac+{b}^{2}}B\sqrt{2}}{ \left ( 16\,ac-4\,{b}^{2} \right ) \sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}\arctan \left ({\frac{cx\sqrt{2}}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}} \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((C*x^2+B*x+A)/x/(c*x^4+b*x^2+a),x)

[Out]

A*ln(x)/a-4*c/(16*a*c-4*b^2)*ln(-2*c*x^2+(-4*a*c+b^2)^(1/2)-b)*A+1/a/(16*a*c-4*b^2)*ln(-2*c*x^2+(-4*a*c+b^2)^(
1/2)-b)*A*b^2+1/a*(-4*a*c+b^2)^(1/2)/(16*a*c-4*b^2)*ln(-2*c*x^2+(-4*a*c+b^2)^(1/2)-b)*A*b-2*(-4*a*c+b^2)^(1/2)
/(16*a*c-4*b^2)*ln(-2*c*x^2+(-4*a*c+b^2)^(1/2)-b)*C+4*c*(-4*a*c+b^2)^(1/2)/(16*a*c-4*b^2)*B*2^(1/2)/(((-4*a*c+
b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))-4*c/(16*a*c-4*b^2)*ln(2*c*x^2+(-4
*a*c+b^2)^(1/2)+b)*A+1/a/(16*a*c-4*b^2)*ln(2*c*x^2+(-4*a*c+b^2)^(1/2)+b)*A*b^2-1/a*(-4*a*c+b^2)^(1/2)/(16*a*c-
4*b^2)*ln(2*c*x^2+(-4*a*c+b^2)^(1/2)+b)*A*b+2*(-4*a*c+b^2)^(1/2)/(16*a*c-4*b^2)*ln(2*c*x^2+(-4*a*c+b^2)^(1/2)+
b)*C+4*c*(-4*a*c+b^2)^(1/2)/(16*a*c-4*b^2)*B*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(
-4*a*c+b^2)^(1/2))*c)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((C*x^2+B*x+A)/x/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

A*log(x)/a - integrate((A*c*x^3 - B*a - (C*a - A*b)*x)/(c*x^4 + b*x^2 + a), x)/a

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((C*x^2+B*x+A)/x/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((C*x**2+B*x+A)/x/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [C]  time = 2.44713, size = 4740, normalized size = 20.7 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((C*x^2+B*x+A)/x/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

2*(2*sqrt(a*c)*C*a*c^2*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcs
in(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + sqrt(a*c)
*A*b*c^2*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*
c)*b/(a*abs(c)))))^2*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 4*sqrt(a*c)*C*a*c^2*cos
(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(
c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)
*b/(a*abs(c))))) + 2*sqrt(a*c)*A*b*c^2*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/
2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))
))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 2*sqrt(a*c)*C*a*c^2*cos(5/4*pi + 1/2*real_part(ar
csin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*im
ag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - sqrt(a*c)*A*b*c^2*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(
a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin
(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 + (a*c^3)^(1/4)*B*a*c^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))
))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*B*a*c^2*sin(5/4*pi + 1/2*re
al_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*arctan(-
((a/c)^(1/4)*cos(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))) - x)/((a/c)^(1/4)*sin(5/4*pi + 1/2*arcsin(1/
2*sqrt(a*c)*b/(a*abs(c))))))/(sqrt(b^2 - 4*a*c)*a*b*c*abs(c) - (a*b^2 - 4*a^2*c)*c^2) + 2*(2*sqrt(a*c)*C*a*c^2
*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*
abs(c)))))^2*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + sqrt(a*c)*A*b*c^2*cos(1/4*pi +
1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*s
in(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 4*sqrt(a*c)*C*a*c^2*cos(1/4*pi + 1/2*real_par
t(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/
2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 2*s
qrt(a*c)*A*b*c^2*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2
*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(
arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - 2*sqrt(a*c)*C*a*c^2*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(
a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqr
t(a*c)*b/(a*abs(c)))))^2 - sqrt(a*c)*A*b*c^2*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*s
in(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*ab
s(c)))))^2 + (a*c^3)^(1/4)*B*a*c^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*re
al_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*B*a*c^2*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqr
t(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*arctan(-((a/c)^(1/4)*cos(1/4*p
i + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))) - x)/((a/c)^(1/4)*sin(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c
))))))/(sqrt(b^2 - 4*a*c)*a*b*c*abs(c) - (a*b^2 - 4*a^2*c)*c^2) + 1/2*(2*sqrt(a*c)*C*a*c^2*cos(5/4*pi + 1/2*re
al_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 + sqr
t(a*c)*A*b*c^2*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2
*sqrt(a*c)*b/(a*abs(c)))))^2 - 2*sqrt(a*c)*C*a*c^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*s
in(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - sqrt(a*c)*A*b*c^2*cosh(1/2*imag_part(arcsin
(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 + 4*sqrt(a*
c)*C*a*c^2*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqr
t(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - 2*sqrt(a*c)*A*b*c^2*cos(5/4*p
i + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))
))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 4*sqrt(a*c)*C*a*c^2*cosh(1/2*imag_part(arcsin(1/2
*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_par
t(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 2*sqrt(a*c)*A*b*c^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(
c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*
c)*b/(a*abs(c))))) + 2*sqrt(a*c)*C*a*c^2*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin
h(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - sqrt(a*c)*A*b*c^2*cos(5/4*pi + 1/2*real_part(arcsin(1
/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 2*sqrt(a*c)*C*a*c^2
*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(
a*abs(c)))))^2 + sqrt(a*c)*A*b*c^2*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*
imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 2*(a*c^3)^(1/4)*B*a*c^2*cos(5/4*pi + 1/2*real_part(arcsin(1
/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 2*(a*c^3)^(1/4)*B*a*c^2
*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*
abs(c))))))*log(-2*x*(a/c)^(1/4)*cos(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))) + x^2 + sqrt(a/c))/(sqrt
(b^2 - 4*a*c)*a*b*c*abs(c) - (a*b^2 - 4*a^2*c)*c^2) + 1/2*(2*sqrt(a*c)*C*a*c^2*cos(1/4*pi + 1/2*real_part(arcs
in(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 + sqrt(a*c)*A*b*c
^2*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b
/(a*abs(c)))))^2 - 2*sqrt(a*c)*C*a*c^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(1/4*pi +
1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - sqrt(a*c)*A*b*c^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*
c)*b/(a*abs(c)))))^2*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 + 4*sqrt(a*c)*C*a*c^2*c
os(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*
abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - 2*sqrt(a*c)*A*b*c^2*cos(1/4*pi + 1/2*real
_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*
imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 4*sqrt(a*c)*C*a*c^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b
/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2
*sqrt(a*c)*b/(a*abs(c))))) - 2*sqrt(a*c)*A*b*c^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1
/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(
c))))) - 2*sqrt(a*c)*C*a*c^2*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_p
art(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - sqrt(a*c)*A*b*c^2*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)
*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 2*sqrt(a*c)*C*a*c^2*sin(1/4*pi
+ 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))
^2 + sqrt(a*c)*A*b*c^2*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(ar
csin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 2*(a*c^3)^(1/4)*B*a*c^2*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)
*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 2*(a*c^3)^(1/4)*B*a*c^2*cos(1/4*pi
+ 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*
log(-2*x*(a/c)^(1/4)*cos(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))) + x^2 + sqrt(a/c))/(sqrt(b^2 - 4*a*c
)*a*b*c*abs(c) - (a*b^2 - 4*a^2*c)*c^2) - 1/4*A*log(abs(c*x^4 + b*x^2 + a))/a + A*log(abs(x))/a