### 3.25 $$\int \frac{A+B x+C x^2}{a+b x^2+c x^4} \, dx$$

Optimal. Leaf size=211 $\frac{\left (\frac{2 A c-b C}{\sqrt{b^2-4 a c}}+C\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\left (C-\frac{2 A c-b C}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} \sqrt{c} \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{B \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{\sqrt{b^2-4 a c}}$

[Out]

((C + (2*A*c - b*C)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[
c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((C - (2*A*c - b*C)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + S
qrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - (B*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]
])/Sqrt[b^2 - 4*a*c]

________________________________________________________________________________________

Rubi [A]  time = 0.266254, antiderivative size = 211, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 25, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.28, Rules used = {1673, 1166, 205, 12, 1107, 618, 206} $\frac{\left (\frac{2 A c-b C}{\sqrt{b^2-4 a c}}+C\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\left (C-\frac{2 A c-b C}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} \sqrt{c} \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{B \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{\sqrt{b^2-4 a c}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(A + B*x + C*x^2)/(a + b*x^2 + c*x^4),x]

[Out]

((C + (2*A*c - b*C)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[
c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((C - (2*A*c - b*C)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + S
qrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - (B*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]
])/Sqrt[b^2 - 4*a*c]

Rule 1673

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1107

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{A+B x+C x^2}{a+b x^2+c x^4} \, dx &=\int \frac{B x}{a+b x^2+c x^4} \, dx+\int \frac{A+C x^2}{a+b x^2+c x^4} \, dx\\ &=B \int \frac{x}{a+b x^2+c x^4} \, dx+\frac{1}{2} \left (C-\frac{2 A c-b C}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx+\frac{1}{2} \left (C+\frac{2 A c-b C}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx\\ &=\frac{\left (C+\frac{2 A c-b C}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\left (C-\frac{2 A c-b C}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b+\sqrt{b^2-4 a c}}}+\frac{1}{2} B \operatorname{Subst}\left (\int \frac{1}{a+b x+c x^2} \, dx,x,x^2\right )\\ &=\frac{\left (C+\frac{2 A c-b C}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\left (C-\frac{2 A c-b C}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b+\sqrt{b^2-4 a c}}}-B \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )\\ &=\frac{\left (C+\frac{2 A c-b C}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\left (C-\frac{2 A c-b C}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b+\sqrt{b^2-4 a c}}}-\frac{B \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{\sqrt{b^2-4 a c}}\\ \end{align*}

Mathematica [A]  time = 0.222659, size = 234, normalized size = 1.11 $\frac{\frac{\sqrt{2} \left (C \left (\sqrt{b^2-4 a c}-b\right )+2 A c\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{2} \left (C \left (\sqrt{b^2-4 a c}+b\right )-2 A c\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{c} \sqrt{\sqrt{b^2-4 a c}+b}}+B \log \left (\sqrt{b^2-4 a c}-b-2 c x^2\right )-B \log \left (\sqrt{b^2-4 a c}+b+2 c x^2\right )}{2 \sqrt{b^2-4 a c}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(A + B*x + C*x^2)/(a + b*x^2 + c*x^4),x]

[Out]

((Sqrt[2]*(2*A*c + (-b + Sqrt[b^2 - 4*a*c])*C)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[
c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*(-2*A*c + (b + Sqrt[b^2 - 4*a*c])*C)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqr
t[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + B*Log[-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2] - B
*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2])/(2*Sqrt[b^2 - 4*a*c])

________________________________________________________________________________________

Maple [B]  time = 0.017, size = 616, normalized size = 2.9 \begin{align*} -{\frac{B}{8\,ac-2\,{b}^{2}}\sqrt{-4\,ac+{b}^{2}}\ln \left ( -2\,c{x}^{2}+\sqrt{-4\,ac+{b}^{2}}-b \right ) }+{\frac{c\sqrt{2}A}{4\,ac-{b}^{2}}\sqrt{-4\,ac+{b}^{2}}{\it Artanh} \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( \sqrt{-4\,ac+{b}^{2}}-b \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( \sqrt{-4\,ac+{b}^{2}}-b \right ) c}}}}-2\,{\frac{c\sqrt{2}Ca}{ \left ( 4\,ac-{b}^{2} \right ) \sqrt{ \left ( \sqrt{-4\,ac+{b}^{2}}-b \right ) c}}{\it Artanh} \left ({\frac{cx\sqrt{2}}{\sqrt{ \left ( \sqrt{-4\,ac+{b}^{2}}-b \right ) c}}} \right ) }+{\frac{\sqrt{2}C{b}^{2}}{8\,ac-2\,{b}^{2}}{\it Artanh} \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( \sqrt{-4\,ac+{b}^{2}}-b \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( \sqrt{-4\,ac+{b}^{2}}-b \right ) c}}}}-{\frac{\sqrt{2}bC}{8\,ac-2\,{b}^{2}}\sqrt{-4\,ac+{b}^{2}}{\it Artanh} \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( \sqrt{-4\,ac+{b}^{2}}-b \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( \sqrt{-4\,ac+{b}^{2}}-b \right ) c}}}}+{\frac{B}{8\,ac-2\,{b}^{2}}\sqrt{-4\,ac+{b}^{2}}\ln \left ( 2\,c{x}^{2}+\sqrt{-4\,ac+{b}^{2}}+b \right ) }+{\frac{c\sqrt{2}A}{4\,ac-{b}^{2}}\sqrt{-4\,ac+{b}^{2}}\arctan \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+2\,{\frac{c\sqrt{2}Ca}{ \left ( 4\,ac-{b}^{2} \right ) \sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}\arctan \left ({\frac{cx\sqrt{2}}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}} \right ) }-{\frac{\sqrt{2}C{b}^{2}}{8\,ac-2\,{b}^{2}}\arctan \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{\sqrt{2}bC}{8\,ac-2\,{b}^{2}}\sqrt{-4\,ac+{b}^{2}}\arctan \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((C*x^2+B*x+A)/(c*x^4+b*x^2+a),x)

[Out]

-1/2*(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*B*ln(-2*c*x^2+(-4*a*c+b^2)^(1/2)-b)+c*(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*2^(1/
2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*A-2*c/(4*a*c-b^2)*2^
(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*C*a+1/2/(4*a*c-b^
2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*C*b^2-1/2*(-
4*a*c+b^2)^(1/2)/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)
-b)*c)^(1/2))*b*C+1/2*(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*B*ln(2*c*x^2+(-4*a*c+b^2)^(1/2)+b)+c*(-4*a*c+b^2)^(1/2)/(
4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A+2*c
/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*C*a
-1/2/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))
*C*b^2-1/2*(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*
a*c+b^2)^(1/2))*c)^(1/2))*b*C

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C x^{2} + B x + A}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((C*x^2+B*x+A)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate((C*x^2 + B*x + A)/(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((C*x^2+B*x+A)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((C*x**2+B*x+A)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [C]  time = 2.94584, size = 9080, normalized size = 43.03 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((C*x^2+B*x+A)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

1/2*(3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(5/4*pi + 1/2*real_p
art(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sin(5/4*p
i + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - ((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3
/4)*sqrt(b^2 - 4*a*c)*b)*C*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sin(5/4*pi + 1/2*real_par
t(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 - 9*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2
- 4*a*c)*b)*C*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2
*sqrt(a*c)*b/(a*abs(c)))))^2*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_par
t(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 -
4*a*c)*b)*C*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(5/4*pi + 1/2*real_part(arcsin(1/2*s
qrt(a*c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 9*((a*c^3)^(3/4)*b^2 - 4*
(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*
abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqr
t(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 3*((a*c^3)^(3/4)*b^2 - 4*(a
*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))
*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(
a*abs(c)))))^2 - 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(5/4*pi
+ 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*ab
s(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 + ((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c
+ (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh(
1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 + 2*(sqrt(a*c)*b^2*c^2 + 4*sqrt(a*c)*a*c^3 + sqrt(b^2 - 4
*a*c)*sqrt(a*c)*b*c^2)*B*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(ar
csin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - 4*(sqrt
(a*c)*b^2*c^2 + 4*sqrt(a*c)*a*c^3 - sqrt(b^2 - 4*a*c)*sqrt(a*c)*b*c^2)*B*cos(5/4*pi + 1/2*real_part(arcsin(1/2
*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(
arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - 2*(sqrt(a*c)*b^
2*c^2 - 4*sqrt(a*c)*a*c^3 + sqrt(b^2 - 4*a*c)*sqrt(a*c)*b*c^2)*B*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*
c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1
/2*sqrt(a*c)*b/(a*abs(c)))))^2 + ((a*c^3)^(1/4)*b^2*c^2 - 4*(a*c^3)^(1/4)*a*c^3 + (a*c^3)^(1/4)*sqrt(b^2 - 4*a
*c)*b*c^2)*A*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqr
t(a*c)*b/(a*abs(c))))) - ((a*c^3)^(1/4)*b^2*c^2 - 4*(a*c^3)^(1/4)*a*c^3 + (a*c^3)^(1/4)*sqrt(b^2 - 4*a*c)*b*c^
2)*A*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b
/(a*abs(c))))))*arctan(-((a/c)^(1/4)*cos(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))) - x)/((a/c)^(1/4)*si
n(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))/(a*b^2*c^3 - 4*a^2*c^4) + 1/2*(3*((a*c^3)^(3/4)*b^2 - 4*(
a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*a
bs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sq
rt(a*c)*b/(a*abs(c))))) - ((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cosh
(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs
(c)))))^3 - 9*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(1/4*pi + 1/2
*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*si
n(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs
(c))))) + 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cosh(1/2*imag_part
(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh
(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 9*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/
4)*sqrt(b^2 - 4*a*c)*b)*C*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part
(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2
*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)
*sqrt(b^2 - 4*a*c)*b)*C*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arc
sin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 3*((a*c^3)^(3/
4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt
(a*c)*b/(a*abs(c)))))^2*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arc
sin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 + ((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*
c)*b)*C*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a
*c)*b/(a*abs(c)))))^3 + 2*(sqrt(a*c)*b^2*c^2 - 4*sqrt(a*c)*a*c^3 - sqrt(b^2 - 4*a*c)*sqrt(a*c)*b*c^2)*B*cos(1/
4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))
)))^2*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 4*(sqrt(a*c)*b^2*c^2 - 4*sqrt(a*c)*a*c
^3 - sqrt(b^2 - 4*a*c)*sqrt(a*c)*b*c^2)*B*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh
(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c
)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 2*(sqrt(a*c)*b^2*c^2 + 4*sqrt(a*c)*a*c^3 + sqr
t(b^2 - 4*a*c)*sqrt(a*c)*b*c^2)*B*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi +
1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2
+ ((a*c^3)^(1/4)*b^2*c^2 - 4*(a*c^3)^(1/4)*a*c^3 + (a*c^3)^(1/4)*sqrt(b^2 - 4*a*c)*b*c^2)*A*cosh(1/2*imag_part
(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - ((a*c^
3)^(1/4)*b^2*c^2 - 4*(a*c^3)^(1/4)*a*c^3 + (a*c^3)^(1/4)*sqrt(b^2 - 4*a*c)*b*c^2)*A*sin(1/4*pi + 1/2*real_part
(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*arctan(-((a/c)^
(1/4)*cos(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))) - x)/((a/c)^(1/4)*sin(1/4*pi + 1/2*arcsin(1/2*sqrt(
a*c)*b/(a*abs(c))))))/(a*b^2*c^3 - 4*a^2*c^4) - 1/4*(((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*
sqrt(b^2 - 4*a*c)*b)*C*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*cosh(1/2*imag_part(ar
csin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 - 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4
*a*c)*b)*C*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(
a*c)*b/(a*abs(c)))))^3*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 3*((a*c^3)^(3/4)*b^
2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)
*b/(a*abs(c)))))^3*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqr
t(a*c)*b/(a*abs(c))))) + 9*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos
(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(
c)))))^2*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(
a*c)*b/(a*abs(c))))) + 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(5
/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(
c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 9*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c
+ (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/
2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))
))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - ((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a
*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh(1/2*
imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 + 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*
sqrt(b^2 - 4*a*c)*b)*C*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_p
art(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 - (sqrt(a
*c)*b^2*c^2 + 4*sqrt(a*c)*a*c^3 + sqrt(b^2 - 4*a*c)*sqrt(a*c)*b*c^2)*B*cos(5/4*pi + 1/2*real_part(arcsin(1/2*s
qrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - (sqrt(a*c)*b^2*c^2 - 4*
sqrt(a*c)*a*c^3 - sqrt(b^2 - 4*a*c)*sqrt(a*c)*b*c^2)*B*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))
^2*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 2*(sqrt(a*c)*b^2*c^2 - 4*sqrt(a*c)*a*c^
3 - sqrt(b^2 - 4*a*c)*sqrt(a*c)*b*c^2)*B*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cos
h(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) +
2*(sqrt(a*c)*b^2*c^2 - 4*sqrt(a*c)*a*c^3 - sqrt(b^2 - 4*a*c)*sqrt(a*c)*b*c^2)*B*cosh(1/2*imag_part(arcsin(1/2
*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_par
t(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + (sqrt(a*c)*b^2*c^2 - 4*sqrt(a*c)*a*c^3 + sqrt(b^2 - 4*a*c)*sqrt(a*c)*
b*c^2)*B*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(
a*c)*b/(a*abs(c)))))^2 + (sqrt(a*c)*b^2*c^2 + 4*sqrt(a*c)*a*c^3 - sqrt(b^2 - 4*a*c)*sqrt(a*c)*b*c^2)*B*sin(5/4
*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)
))))^2 + ((a*c^3)^(1/4)*b^2*c^2 - 4*(a*c^3)^(1/4)*a*c^3 + (a*c^3)^(1/4)*sqrt(b^2 - 4*a*c)*b*c^2)*A*cos(5/4*pi
+ 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) -
((a*c^3)^(1/4)*b^2*c^2 - 4*(a*c^3)^(1/4)*a*c^3 + (a*c^3)^(1/4)*sqrt(b^2 - 4*a*c)*b*c^2)*A*cos(5/4*pi + 1/2*re
al_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*log(-2*x
*(a/c)^(1/4)*cos(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))) + x^2 + sqrt(a/c))/(a*b^2*c^3 - 4*a^2*c^4) -
1/4*(((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(1/4*pi + 1/2*real_pa
rt(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 - 3*((a*c^
3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(1/4*pi + 1/2*real_part(arcsin(1/
2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sin(1/4*pi + 1/2*real_pa
rt(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^
2 - 4*a*c)*b)*C*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*cosh(1/2*imag_part(arcsin(1/
2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 9*((a*c^3)^(3/4)*b^2 -
4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/
(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(1/4*pi + 1/2*real_part(arcsin(1/2*
sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 3*((a*c^3)^(3/4)*b^2 - 4
*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a
*abs(c)))))^3*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*
b/(a*abs(c)))))^2 - 9*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(1/4*
pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))
)*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/
(a*abs(c)))))^2 - ((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(1/4*pi +
1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^
3 + 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*C*cos(1/4*pi + 1/2*real_pa
rt(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh
(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 - (sqrt(a*c)*b^2*c^2 - 4*sqrt(a*c)*a*c^3 - sqrt(b^2 - 4*
a*c)*sqrt(a*c)*b*c^2)*B*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(a
rcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - (sqrt(a*c)*b^2*c^2 - 4*sqrt(a*c)*a*c^3 - sqrt(b^2 - 4*a*c)*sqrt(a*c)*b
*c^2)*B*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a
*c)*b/(a*abs(c)))))^2 - 2*(sqrt(a*c)*b^2*c^2 - 4*sqrt(a*c)*a*c^3 - sqrt(b^2 - 4*a*c)*sqrt(a*c)*b*c^2)*B*cos(1/
4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c
)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - 2*(sqrt(a*c)*b^2*c^2 + 4*sqrt(a*c)*a*c^3 - sqr
t(b^2 - 4*a*c)*sqrt(a*c)*b*c^2)*B*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*rea
l_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (sqrt(
a*c)*b^2*c^2 - 4*sqrt(a*c)*a*c^3 + sqrt(b^2 - 4*a*c)*sqrt(a*c)*b*c^2)*B*cos(1/4*pi + 1/2*real_part(arcsin(1/2*
sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - (sqrt(a*c)*b^2*c^2 + 4
*sqrt(a*c)*a*c^3 + sqrt(b^2 - 4*a*c)*sqrt(a*c)*b*c^2)*B*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*a
bs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 + ((a*c^3)^(1/4)*b^2*c^2 - 4*(a*c^3)^(1/
4)*a*c^3 + (a*c^3)^(1/4)*sqrt(b^2 - 4*a*c)*b*c^2)*A*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c
)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - ((a*c^3)^(1/4)*b^2*c^2 - 4*(a*c^3)^(1/4)*a*c^3
+ (a*c^3)^(1/4)*sqrt(b^2 - 4*a*c)*b*c^2)*A*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*si
nh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*log(-2*x*(a/c)^(1/4)*cos(1/4*pi + 1/2*arcsin(1/2*sqrt(a
*c)*b/(a*abs(c)))) + x^2 + sqrt(a/c))/(a*b^2*c^3 - 4*a^2*c^4)