3.21 $$\int \frac{x^4 (A+B x+C x^2)}{a+b x^2+c x^4} \, dx$$

Optimal. Leaf size=339 $-\frac{\left (-\frac{A c \left (b^2-2 a c\right )-b C \left (b^2-3 a c\right )}{\sqrt{b^2-4 a c}}+a c C+A b c+b^2 (-C)\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\left (\frac{A c \left (b^2-2 a c\right )-b C \left (b^2-3 a c\right )}{\sqrt{b^2-4 a c}}+a c C+A b c+b^2 (-C)\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} c^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{B \left (b^2-2 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{2 c^2 \sqrt{b^2-4 a c}}-\frac{b B \log \left (a+b x^2+c x^4\right )}{4 c^2}+\frac{x (A c-b C)}{c^2}+\frac{B x^2}{2 c}+\frac{C x^3}{3 c}$

[Out]

((A*c - b*C)*x)/c^2 + (B*x^2)/(2*c) + (C*x^3)/(3*c) - ((A*b*c - b^2*C + a*c*C - (A*c*(b^2 - 2*a*c) - b*(b^2 -
3*a*c)*C)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(5/2)*Sqrt[b
- Sqrt[b^2 - 4*a*c]]) - ((A*b*c - b^2*C + a*c*C + (A*c*(b^2 - 2*a*c) - b*(b^2 - 3*a*c)*C)/Sqrt[b^2 - 4*a*c])*A
rcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(5/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - (B*(b^
2 - 2*a*c)*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(2*c^2*Sqrt[b^2 - 4*a*c]) - (b*B*Log[a + b*x^2 + c*x^4])/
(4*c^2)

________________________________________________________________________________________

Rubi [A]  time = 1.85593, antiderivative size = 339, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 11, integrand size = 28, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.393, Rules used = {1662, 1279, 1166, 205, 12, 1114, 703, 634, 618, 206, 628} $-\frac{\left (-\frac{A c \left (b^2-2 a c\right )-b C \left (b^2-3 a c\right )}{\sqrt{b^2-4 a c}}+a c C+A b c+b^2 (-C)\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\left (\frac{A c \left (b^2-2 a c\right )-b C \left (b^2-3 a c\right )}{\sqrt{b^2-4 a c}}+a c C+A b c+b^2 (-C)\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} c^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{B \left (b^2-2 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{2 c^2 \sqrt{b^2-4 a c}}-\frac{b B \log \left (a+b x^2+c x^4\right )}{4 c^2}+\frac{x (A c-b C)}{c^2}+\frac{B x^2}{2 c}+\frac{C x^3}{3 c}$

Antiderivative was successfully veriﬁed.

[In]

Int[(x^4*(A + B*x + C*x^2))/(a + b*x^2 + c*x^4),x]

[Out]

((A*c - b*C)*x)/c^2 + (B*x^2)/(2*c) + (C*x^3)/(3*c) - ((A*b*c - b^2*C + a*c*C - (A*c*(b^2 - 2*a*c) - b*(b^2 -
3*a*c)*C)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(5/2)*Sqrt[b
- Sqrt[b^2 - 4*a*c]]) - ((A*b*c - b^2*C + a*c*C + (A*c*(b^2 - 2*a*c) - b*(b^2 - 3*a*c)*C)/Sqrt[b^2 - 4*a*c])*A
rcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(5/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - (B*(b^
2 - 2*a*c)*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(2*c^2*Sqrt[b^2 - 4*a*c]) - (b*B*Log[a + b*x^2 + c*x^4])/
(4*c^2)

Rule 1662

Int[(Pq_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x],
k}, Int[(d*x)^m*Sum[Coeff[Pq, x, 2*k]*x^(2*k), {k, 0, q/2 + 1}]*(a + b*x^2 + c*x^4)^p, x] + Dist[1/d, Int[(d*
x)^(m + 1)*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0, (q - 1)/2 + 1}]*(a + b*x^2 + c*x^4)^p, x], x]] /; FreeQ[{
a, b, c, d, m, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1279

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(e*f
*(f*x)^(m - 1)*(a + b*x^2 + c*x^4)^(p + 1))/(c*(m + 4*p + 3)), x] - Dist[f^2/(c*(m + 4*p + 3)), Int[(f*x)^(m -
2)*(a + b*x^2 + c*x^4)^p*Simp[a*e*(m - 1) + (b*e*(m + 2*p + 1) - c*d*(m + 4*p + 3))*x^2, x], x], x] /; FreeQ[
{a, b, c, d, e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[m, 1] && NeQ[m + 4*p + 3, 0] && IntegerQ[2*p] && (Inte
gerQ[p] || IntegerQ[m])

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1114

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]

Rule 703

Int[((d_.) + (e_.)*(x_))^(m_)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1))/(c*
(m - 1)), x] + Dist[1/c, Int[((d + e*x)^(m - 2)*Simp[c*d^2 - a*e^2 + e*(2*c*d - b*e)*x, x])/(a + b*x + c*x^2),
x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*
e, 0] && GtQ[m, 1]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x^4 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx &=\int \frac{B x^5}{a+b x^2+c x^4} \, dx+\int \frac{x^4 \left (A+C x^2\right )}{a+b x^2+c x^4} \, dx\\ &=\frac{C x^3}{3 c}+B \int \frac{x^5}{a+b x^2+c x^4} \, dx-\frac{\int \frac{x^2 \left (3 a C-3 (A c-b C) x^2\right )}{a+b x^2+c x^4} \, dx}{3 c}\\ &=\frac{(A c-b C) x}{c^2}+\frac{C x^3}{3 c}+\frac{1}{2} B \operatorname{Subst}\left (\int \frac{x^2}{a+b x+c x^2} \, dx,x,x^2\right )+\frac{\int \frac{-3 a (A c-b C)-3 \left (A b c-b^2 C+a c C\right ) x^2}{a+b x^2+c x^4} \, dx}{3 c^2}\\ &=\frac{(A c-b C) x}{c^2}+\frac{B x^2}{2 c}+\frac{C x^3}{3 c}+\frac{B \operatorname{Subst}\left (\int \frac{-a-b x}{a+b x+c x^2} \, dx,x,x^2\right )}{2 c}-\frac{\left (A b c-b^2 C+a c C-\frac{A c \left (b^2-2 a c\right )-b \left (b^2-3 a c\right ) C}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{2 c^2}-\frac{\left (A b c-b^2 C+a c C+\frac{A c \left (b^2-2 a c\right )-b \left (b^2-3 a c\right ) C}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{2 c^2}\\ &=\frac{(A c-b C) x}{c^2}+\frac{B x^2}{2 c}+\frac{C x^3}{3 c}-\frac{\left (A b c-b^2 C+a c C-\frac{A c \left (b^2-2 a c\right )-b \left (b^2-3 a c\right ) C}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\left (A b c-b^2 C+a c C+\frac{A c \left (b^2-2 a c\right )-b \left (b^2-3 a c\right ) C}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{5/2} \sqrt{b+\sqrt{b^2-4 a c}}}-\frac{(b B) \operatorname{Subst}\left (\int \frac{b+2 c x}{a+b x+c x^2} \, dx,x,x^2\right )}{4 c^2}+\frac{\left (B \left (b^2-2 a c\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+b x+c x^2} \, dx,x,x^2\right )}{4 c^2}\\ &=\frac{(A c-b C) x}{c^2}+\frac{B x^2}{2 c}+\frac{C x^3}{3 c}-\frac{\left (A b c-b^2 C+a c C-\frac{A c \left (b^2-2 a c\right )-b \left (b^2-3 a c\right ) C}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\left (A b c-b^2 C+a c C+\frac{A c \left (b^2-2 a c\right )-b \left (b^2-3 a c\right ) C}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{5/2} \sqrt{b+\sqrt{b^2-4 a c}}}-\frac{b B \log \left (a+b x^2+c x^4\right )}{4 c^2}-\frac{\left (B \left (b^2-2 a c\right )\right ) \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{2 c^2}\\ &=\frac{(A c-b C) x}{c^2}+\frac{B x^2}{2 c}+\frac{C x^3}{3 c}-\frac{\left (A b c-b^2 C+a c C-\frac{A c \left (b^2-2 a c\right )-b \left (b^2-3 a c\right ) C}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\left (A b c-b^2 C+a c C+\frac{A c \left (b^2-2 a c\right )-b \left (b^2-3 a c\right ) C}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{5/2} \sqrt{b+\sqrt{b^2-4 a c}}}-\frac{B \left (b^2-2 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{2 c^2 \sqrt{b^2-4 a c}}-\frac{b B \log \left (a+b x^2+c x^4\right )}{4 c^2}\\ \end{align*}

Mathematica [A]  time = 0.643908, size = 460, normalized size = 1.36 $\frac{\frac{6 \sqrt{2} \left (A c \left (-b \sqrt{b^2-4 a c}-2 a c+b^2\right )+C \left (b^2 \sqrt{b^2-4 a c}-a c \sqrt{b^2-4 a c}+3 a b c-b^3\right )\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{6 \sqrt{2} \left (C \left (b^2 \sqrt{b^2-4 a c}-a c \sqrt{b^2-4 a c}-3 a b c+b^3\right )-A c \left (b \sqrt{b^2-4 a c}-2 a c+b^2\right )\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{3 B \sqrt{c} \left (b \sqrt{b^2-4 a c}+2 a c-b^2\right ) \log \left (\sqrt{b^2-4 a c}-b-2 c x^2\right )}{\sqrt{b^2-4 a c}}-\frac{3 B \sqrt{c} \left (b \sqrt{b^2-4 a c}-2 a c+b^2\right ) \log \left (\sqrt{b^2-4 a c}+b+2 c x^2\right )}{\sqrt{b^2-4 a c}}+12 \sqrt{c} x (A c-b C)+6 B c^{3/2} x^2+4 c^{3/2} C x^3}{12 c^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(x^4*(A + B*x + C*x^2))/(a + b*x^2 + c*x^4),x]

[Out]

(12*Sqrt[c]*(A*c - b*C)*x + 6*B*c^(3/2)*x^2 + 4*c^(3/2)*C*x^3 + (6*Sqrt[2]*(A*c*(b^2 - 2*a*c - b*Sqrt[b^2 - 4*
a*c]) + (-b^3 + 3*a*b*c + b^2*Sqrt[b^2 - 4*a*c] - a*c*Sqrt[b^2 - 4*a*c])*C)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b
- Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (6*Sqrt[2]*(-(A*c*(b^2 - 2*a*c + b*Sq
rt[b^2 - 4*a*c])) + (b^3 - 3*a*b*c + b^2*Sqrt[b^2 - 4*a*c] - a*c*Sqrt[b^2 - 4*a*c])*C)*ArcTan[(Sqrt[2]*Sqrt[c]
*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - (3*B*Sqrt[c]*(-b^2 + 2*a*c
+ b*Sqrt[b^2 - 4*a*c])*Log[-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2])/Sqrt[b^2 - 4*a*c] - (3*B*Sqrt[c]*(b^2 - 2*a*c +
b*Sqrt[b^2 - 4*a*c])*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2])/Sqrt[b^2 - 4*a*c])/(12*c^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.046, size = 1622, normalized size = 4.8 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(C*x^2+B*x+A)/(c*x^4+b*x^2+a),x)

[Out]

3/2/c/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2
))*C*(-4*a*c+b^2)^(1/2)*a*b+3/2/c/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+
(-4*a*c+b^2)^(1/2))*c)^(1/2))*C*(-4*a*c+b^2)^(1/2)*a*b-1/c/(4*a*c-b^2)*B*ln(-2*c*x^2+(-4*a*c+b^2)^(1/2)-b)*a*b
+2/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*
C*a^2-2/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/
2))*C*a^2-1/2/c/(4*a*c-b^2)*B*ln(2*c*x^2+(-4*a*c+b^2)^(1/2)+b)*(-4*a*c+b^2)^(1/2)*a+1/4/c^2/(4*a*c-b^2)*B*ln(2
*c*x^2+(-4*a*c+b^2)^(1/2)+b)*(-4*a*c+b^2)^(1/2)*b^2-1/c/(4*a*c-b^2)*B*ln(2*c*x^2+(-4*a*c+b^2)^(1/2)+b)*a*b+1/2
/c/(4*a*c-b^2)*B*ln(-2*c*x^2+(-4*a*c+b^2)^(1/2)-b)*(-4*a*c+b^2)^(1/2)*a-1/4/c^2/(4*a*c-b^2)*B*ln(-2*c*x^2+(-4*
a*c+b^2)^(1/2)-b)*(-4*a*c+b^2)^(1/2)*b^2+2/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^
(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*A*a*b-1/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*
x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A*(-4*a*c+b^2)^(1/2)*a-2/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2
))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A*a*b-1/2/c/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2
)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*A*b^3+1/2/c^2/(4*a*c-b^2)*2^(1/2)/((
(-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^4*C+1/2/c/(4*a*c-b^2)*2
^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A*b^3-1/2/c^2/(4*
a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^4*C-1
/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*A*
(-4*a*c+b^2)^(1/2)*a+1/4/c^2/(4*a*c-b^2)*B*ln(-2*c*x^2+(-4*a*c+b^2)^(1/2)-b)*b^3+1/4/c^2/(4*a*c-b^2)*B*ln(2*c*
x^2+(-4*a*c+b^2)^(1/2)+b)*b^3+1/c*A*x-1/c^2*b*C*x-1/2/c^2/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)
*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*C*(-4*a*c+b^2)^(1/2)*b^3-5/2/c/(4*a*c-b^2)*2^(1/2)/(((-
4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^2*C*a+1/2/c/(4*a*c-b^2)*2
^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A*(-4*a*c+b^2)^(1
/2)*b^2-1/2/c^2/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2)
)*c)^(1/2))*C*(-4*a*c+b^2)^(1/2)*b^3+5/2/c/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(
1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2*C*a+1/2*B*x^2/c+1/3*C*x^3/c+1/2/c/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2
)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*A*(-4*a*c+b^2)^(1/2)*b^2

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(C*x^2+B*x+A)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(C*x^2+B*x+A)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(C*x**2+B*x+A)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(C*x^2+B*x+A)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError