### 3.129 $$\int \frac{d+e x^2+f x^4+g x^6}{x^2 (a+b x^2+c x^4)^2} \, dx$$

Optimal. Leaf size=460 $-\frac{x \left (a \left (-2 a^2 g+\frac{b^3 d}{a}+a (b f+2 c e)-b (b e+3 c d)\right )+x^2 \left (-a b (a g+c e)-2 a c (c d-a f)+b^2 c d\right )\right )}{2 a^2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (\frac{4 a^2 c (a g+3 c e)-a b^2 (c e-a g)-4 a b c (a f+4 c d)+3 b^3 c d}{\sqrt{b^2-4 a c}}-a b (a g+c e)-2 a c (5 c d-a f)+3 b^2 c d\right )}{2 \sqrt{2} a^2 \sqrt{c} \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (-\frac{4 a^2 c (a g+3 c e)-a b^2 (c e-a g)-4 a b c (a f+4 c d)+3 b^3 c d}{\sqrt{b^2-4 a c}}-a b (a g+c e)-2 a c (5 c d-a f)+3 b^2 c d\right )}{2 \sqrt{2} a^2 \sqrt{c} \left (b^2-4 a c\right ) \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{d}{a^2 x}$

[Out]

-(d/(a^2*x)) - (x*(a*((b^3*d)/a - b*(3*c*d + b*e) + a*(2*c*e + b*f) - 2*a^2*g) + (b^2*c*d - 2*a*c*(c*d - a*f)
- a*b*(c*e + a*g))*x^2))/(2*a^2*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) - ((3*b^2*c*d - 2*a*c*(5*c*d - a*f) - a*b*(
c*e + a*g) + (3*b^3*c*d - 4*a*b*c*(4*c*d + a*f) - a*b^2*(c*e - a*g) + 4*a^2*c*(3*c*e + a*g))/Sqrt[b^2 - 4*a*c]
)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a^2*Sqrt[c]*(b^2 - 4*a*c)*Sqrt[b - Sqrt[
b^2 - 4*a*c]]) - ((3*b^2*c*d - 2*a*c*(5*c*d - a*f) - a*b*(c*e + a*g) - (3*b^3*c*d - 4*a*b*c*(4*c*d + a*f) - a*
b^2*(c*e - a*g) + 4*a^2*c*(3*c*e + a*g))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a
*c]]])/(2*Sqrt[2]*a^2*Sqrt[c]*(b^2 - 4*a*c)*Sqrt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 2.79105, antiderivative size = 460, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 35, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.114, Rules used = {1669, 1664, 1166, 205} $-\frac{x \left (a \left (-2 a^2 g+\frac{b^3 d}{a}+a (b f+2 c e)-b (b e+3 c d)\right )+x^2 \left (-a b (a g+c e)-2 a c (c d-a f)+b^2 c d\right )\right )}{2 a^2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (\frac{4 a^2 c (a g+3 c e)-a b^2 (c e-a g)-4 a b c (a f+4 c d)+3 b^3 c d}{\sqrt{b^2-4 a c}}-a b (a g+c e)-2 a c (5 c d-a f)+3 b^2 c d\right )}{2 \sqrt{2} a^2 \sqrt{c} \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (-\frac{4 a^2 c (a g+3 c e)-a b^2 (c e-a g)-4 a b c (a f+4 c d)+3 b^3 c d}{\sqrt{b^2-4 a c}}-a b (a g+c e)-2 a c (5 c d-a f)+3 b^2 c d\right )}{2 \sqrt{2} a^2 \sqrt{c} \left (b^2-4 a c\right ) \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{d}{a^2 x}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x^2 + f*x^4 + g*x^6)/(x^2*(a + b*x^2 + c*x^4)^2),x]

[Out]

-(d/(a^2*x)) - (x*(a*((b^3*d)/a - b*(3*c*d + b*e) + a*(2*c*e + b*f) - 2*a^2*g) + (b^2*c*d - 2*a*c*(c*d - a*f)
- a*b*(c*e + a*g))*x^2))/(2*a^2*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) - ((3*b^2*c*d - 2*a*c*(5*c*d - a*f) - a*b*(
c*e + a*g) + (3*b^3*c*d - 4*a*b*c*(4*c*d + a*f) - a*b^2*(c*e - a*g) + 4*a^2*c*(3*c*e + a*g))/Sqrt[b^2 - 4*a*c]
)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a^2*Sqrt[c]*(b^2 - 4*a*c)*Sqrt[b - Sqrt[
b^2 - 4*a*c]]) - ((3*b^2*c*d - 2*a*c*(5*c*d - a*f) - a*b*(c*e + a*g) - (3*b^3*c*d - 4*a*b*c*(4*c*d + a*f) - a*
b^2*(c*e - a*g) + 4*a^2*c*(3*c*e + a*g))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a
*c]]])/(2*Sqrt[2]*a^2*Sqrt[c]*(b^2 - 4*a*c)*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 1669

Int[(Pq_)*(x_)^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{d = Coeff[PolynomialRemainde
r[x^m*Pq, a + b*x^2 + c*x^4, x], x, 0], e = Coeff[PolynomialRemainder[x^m*Pq, a + b*x^2 + c*x^4, x], x, 2]}, S
imp[(x*(a + b*x^2 + c*x^4)^(p + 1)*(a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2))/(2*a*(p + 1)*(b^2 - 4*a*c)
), x] + Dist[1/(2*a*(p + 1)*(b^2 - 4*a*c)), Int[x^m*(a + b*x^2 + c*x^4)^(p + 1)*ExpandToSum[(2*a*(p + 1)*(b^2
- 4*a*c)*PolynomialQuotient[x^m*Pq, a + b*x^2 + c*x^4, x])/x^m + (b^2*d*(2*p + 3) - 2*a*c*d*(4*p + 5) - a*b*e)
/x^m + c*(4*p + 7)*(b*d - 2*a*e)*x^(2 - m), x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x^2] && GtQ[Expon[
Pq, x^2], 1] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && ILtQ[m/2, 0]

Rule 1664

Int[(Pq_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d*x
)^m*Pq*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && PolyQ[Pq, x^2] && IGtQ[p, -2]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{d+e x^2+f x^4+g x^6}{x^2 \left (a+b x^2+c x^4\right )^2} \, dx &=-\frac{x \left (a \left (\frac{b^3 d}{a}-b (3 c d+b e)+a (2 c e+b f)-2 a^2 g\right )+\left (b^2 c d-2 a c (c d-a f)-a b (c e+a g)\right ) x^2\right )}{2 a^2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\int \frac{-2 \left (b^2-4 a c\right ) d+\left (\frac{b^3 d}{a}-b (5 c d+b e)+a (6 c e-b f)+2 a^2 g\right ) x^2+\left (\frac{b^2 c d}{a}-c (2 c d+b e)+a (2 c f-b g)\right ) x^4}{x^2 \left (a+b x^2+c x^4\right )} \, dx}{2 a \left (b^2-4 a c\right )}\\ &=-\frac{x \left (a \left (\frac{b^3 d}{a}-b (3 c d+b e)+a (2 c e+b f)-2 a^2 g\right )+\left (b^2 c d-2 a c (c d-a f)-a b (c e+a g)\right ) x^2\right )}{2 a^2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\int \left (\frac{2 \left (-b^2+4 a c\right ) d}{a x^2}+\frac{3 b^3 d-a b^2 e-a b (13 c d+a f)+2 a^2 (3 c e+a g)+\left (3 b^2 c d-2 a c (5 c d-a f)-a b (c e+a g)\right ) x^2}{a \left (a+b x^2+c x^4\right )}\right ) \, dx}{2 a \left (b^2-4 a c\right )}\\ &=-\frac{d}{a^2 x}-\frac{x \left (a \left (\frac{b^3 d}{a}-b (3 c d+b e)+a (2 c e+b f)-2 a^2 g\right )+\left (b^2 c d-2 a c (c d-a f)-a b (c e+a g)\right ) x^2\right )}{2 a^2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\int \frac{3 b^3 d-a b^2 e-a b (13 c d+a f)+2 a^2 (3 c e+a g)+\left (3 b^2 c d-2 a c (5 c d-a f)-a b (c e+a g)\right ) x^2}{a+b x^2+c x^4} \, dx}{2 a^2 \left (b^2-4 a c\right )}\\ &=-\frac{d}{a^2 x}-\frac{x \left (a \left (\frac{b^3 d}{a}-b (3 c d+b e)+a (2 c e+b f)-2 a^2 g\right )+\left (b^2 c d-2 a c (c d-a f)-a b (c e+a g)\right ) x^2\right )}{2 a^2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\left (3 b^2 c d-2 a c (5 c d-a f)-a b (c e+a g)-\frac{3 b^3 c d-4 a b c (4 c d+a f)-a b^2 (c e-a g)+4 a^2 c (3 c e+a g)}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{4 a^2 \left (b^2-4 a c\right )}-\frac{\left (3 b^2 c d-2 a c (5 c d-a f)-a b (c e+a g)+\frac{3 b^3 c d-4 a b c (4 c d+a f)-a b^2 (c e-a g)+4 a^2 c (3 c e+a g)}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{4 a^2 \left (b^2-4 a c\right )}\\ &=-\frac{d}{a^2 x}-\frac{x \left (a \left (\frac{b^3 d}{a}-b (3 c d+b e)+a (2 c e+b f)-2 a^2 g\right )+\left (b^2 c d-2 a c (c d-a f)-a b (c e+a g)\right ) x^2\right )}{2 a^2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\left (3 b^2 c d-2 a c (5 c d-a f)-a b (c e+a g)+\frac{3 b^3 c d-4 a b c (4 c d+a f)-a b^2 (c e-a g)+4 a^2 c (3 c e+a g)}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a^2 \sqrt{c} \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\left (3 b^2 c d-2 a c (5 c d-a f)-a b (c e+a g)-\frac{3 b^3 c d-4 a b c (4 c d+a f)-a b^2 (c e-a g)+4 a^2 c (3 c e+a g)}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a^2 \sqrt{c} \left (b^2-4 a c\right ) \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 2.63774, size = 529, normalized size = 1.15 $-\frac{-\frac{2 x \left (2 a \left (a^2 g-a c \left (e+f x^2\right )+c^2 d x^2\right )+b^2 \left (a e-c d x^2\right )+a b \left (-a f+a g x^2+3 c d+c e x^2\right )+b^3 (-d)\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (2 a c \left (2 a^2 g-5 c d \sqrt{b^2-4 a c}+a f \sqrt{b^2-4 a c}+6 a c e\right )+b^2 \left (a^2 g+3 c d \sqrt{b^2-4 a c}-a c e\right )-a b \left (c e \sqrt{b^2-4 a c}+a g \sqrt{b^2-4 a c}+4 a c f+16 c^2 d\right )+3 b^3 c d\right )}{\sqrt{c} \left (b^2-4 a c\right )^{3/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (-2 a c \left (2 a^2 g+5 c d \sqrt{b^2-4 a c}-a f \sqrt{b^2-4 a c}+6 a c e\right )+b^2 \left (a^2 (-g)+3 c d \sqrt{b^2-4 a c}+a c e\right )+a b \left (-c e \sqrt{b^2-4 a c}-a g \sqrt{b^2-4 a c}+4 a c f+16 c^2 d\right )-3 b^3 c d\right )}{\sqrt{c} \left (b^2-4 a c\right )^{3/2} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{4 d}{x}}{4 a^2}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x^2 + f*x^4 + g*x^6)/(x^2*(a + b*x^2 + c*x^4)^2),x]

[Out]

-((4*d)/x - (2*x*(-(b^3*d) + b^2*(a*e - c*d*x^2) + a*b*(3*c*d - a*f + c*e*x^2 + a*g*x^2) + 2*a*(a^2*g + c^2*d*
x^2 - a*c*(e + f*x^2))))/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (Sqrt[2]*(3*b^3*c*d + b^2*(3*c*Sqrt[b^2 - 4*a*c
]*d - a*c*e + a^2*g) + 2*a*c*(-5*c*Sqrt[b^2 - 4*a*c]*d + 6*a*c*e + a*Sqrt[b^2 - 4*a*c]*f + 2*a^2*g) - a*b*(16*
c^2*d + c*Sqrt[b^2 - 4*a*c]*e + 4*a*c*f + a*Sqrt[b^2 - 4*a*c]*g))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2
- 4*a*c]]])/(Sqrt[c]*(b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*(-3*b^3*c*d + b^2*(3*c*Sqrt[
b^2 - 4*a*c]*d + a*c*e - a^2*g) - 2*a*c*(5*c*Sqrt[b^2 - 4*a*c]*d + 6*a*c*e - a*Sqrt[b^2 - 4*a*c]*f + 2*a^2*g)
+ a*b*(16*c^2*d - c*Sqrt[b^2 - 4*a*c]*e + 4*a*c*f - a*Sqrt[b^2 - 4*a*c]*g))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b
+ Sqrt[b^2 - 4*a*c]]])/(Sqrt[c]*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(4*a^2)

________________________________________________________________________________________

Maple [B]  time = 0.045, size = 2045, normalized size = 4.5 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((g*x^6+f*x^4+e*x^2+d)/x^2/(c*x^4+b*x^2+a)^2,x)

[Out]

1/4/a*c/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+
b^2)^(1/2)-b)*c)^(1/2))*b^2*e+4/a*c^2/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*
arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b*d+1/4/a*c/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(
-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2*e+4/a*c^2/(4*a*c-b^2)/(-4
*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*
b*d-3/4/a^2*c/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-
4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^3*d-3/4/a^2*c/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c
)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^3*d-a*c/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/
(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*g-a*c/(4*a*c-b^2)/(-4*a
*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*g+
5/2/a*c^2/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^
(1/2))*d-5/2/a*c^2/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1
/2))*c)^(1/2))*d-3*c^2/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(
1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*e-3*c^2/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*
c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*e-1/2/a/(c*x^4+b*x^2+a)*c/(4*a*c-b^2)*x^3*b*e-3/
2/a/(c*x^4+b*x^2+a)/(4*a*c-b^2)*x*b*c*d+1/2/a^2/(c*x^4+b*x^2+a)*c/(4*a*c-b^2)*x^3*b^2*d-1/2/(c*x^4+b*x^2+a)/(4
*a*c-b^2)*x^3*b*g-a/(c*x^4+b*x^2+a)/(4*a*c-b^2)*x*g+c/(c*x^4+b*x^2+a)/(4*a*c-b^2)*x^3*f+1/2/(c*x^4+b*x^2+a)/(4
*a*c-b^2)*x*b*f+1/4/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1
/2)-b)*c)^(1/2))*b*g-1/4/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b
^2)^(1/2))*c)^(1/2))*b*g-1/a/(c*x^4+b*x^2+a)*c^2/(4*a*c-b^2)*x^3*d-1/2/a/(c*x^4+b*x^2+a)/(4*a*c-b^2)*x*b^2*e+1
/2/a^2/(c*x^4+b*x^2+a)/(4*a*c-b^2)*x*b^3*d-1/2*c/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(
c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*f+1/2*c/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arc
tan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*f+1/(c*x^4+b*x^2+a)/(4*a*c-b^2)*x*c*e-d/a^2/x-1/4/(4*a*c-b^2
)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1
/2))*b^2*g-1/4/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((
-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^2*g+c/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)
*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b*f+c/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*
c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*f-1/4/a*c/(4*a*c-b^2)*2^(1/2)/((
b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*e-3/4/a^2*c/(4*a*c-b^2)*
2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^2*d+3/4/a^2*c
/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2
*d+1/4/a*c/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)
^(1/2))*b*e

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x^6+f*x^4+e*x^2+d)/x^2/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x^6+f*x^4+e*x^2+d)/x^2/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x**6+f*x**4+e*x**2+d)/x**2/(c*x**4+b*x**2+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x^6+f*x^4+e*x^2+d)/x^2/(c*x^4+b*x^2+a)^2,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError