### 3.328 $$\int \frac{\sqrt{3-x+2 x^2} (2+x+3 x^2-x^3+5 x^4)}{(5+2 x)^3} \, dx$$

Optimal. Leaf size=151 $\frac{357391 \left (2 x^2-x+3\right )^{3/2}}{82944 (2 x+5)}-\frac{3667 \left (2 x^2-x+3\right )^{3/2}}{1152 (2 x+5)^2}+\frac{5}{48} \left (2 x^2-x+3\right )^{3/2}+\frac{5 (661065-110099 x) \sqrt{2 x^2-x+3}}{82944}-\frac{12670805 \tanh ^{-1}\left (\frac{17-22 x}{12 \sqrt{2} \sqrt{2 x^2-x+3}}\right )}{55296 \sqrt{2}}+\frac{117315 \sinh ^{-1}\left (\frac{1-4 x}{\sqrt{23}}\right )}{512 \sqrt{2}}$

[Out]

(5*(661065 - 110099*x)*Sqrt[3 - x + 2*x^2])/82944 + (5*(3 - x + 2*x^2)^(3/2))/48 - (3667*(3 - x + 2*x^2)^(3/2)
)/(1152*(5 + 2*x)^2) + (357391*(3 - x + 2*x^2)^(3/2))/(82944*(5 + 2*x)) + (117315*ArcSinh[(1 - 4*x)/Sqrt[23]])
/(512*Sqrt[2]) - (12670805*ArcTanh[(17 - 22*x)/(12*Sqrt[2]*Sqrt[3 - x + 2*x^2])])/(55296*Sqrt[2])

________________________________________________________________________________________

Rubi [A]  time = 0.228359, antiderivative size = 151, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 40, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.2, Rules used = {1650, 1653, 814, 843, 619, 215, 724, 206} $\frac{357391 \left (2 x^2-x+3\right )^{3/2}}{82944 (2 x+5)}-\frac{3667 \left (2 x^2-x+3\right )^{3/2}}{1152 (2 x+5)^2}+\frac{5}{48} \left (2 x^2-x+3\right )^{3/2}+\frac{5 (661065-110099 x) \sqrt{2 x^2-x+3}}{82944}-\frac{12670805 \tanh ^{-1}\left (\frac{17-22 x}{12 \sqrt{2} \sqrt{2 x^2-x+3}}\right )}{55296 \sqrt{2}}+\frac{117315 \sinh ^{-1}\left (\frac{1-4 x}{\sqrt{23}}\right )}{512 \sqrt{2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(Sqrt[3 - x + 2*x^2]*(2 + x + 3*x^2 - x^3 + 5*x^4))/(5 + 2*x)^3,x]

[Out]

(5*(661065 - 110099*x)*Sqrt[3 - x + 2*x^2])/82944 + (5*(3 - x + 2*x^2)^(3/2))/48 - (3667*(3 - x + 2*x^2)^(3/2)
)/(1152*(5 + 2*x)^2) + (357391*(3 - x + 2*x^2)^(3/2))/(82944*(5 + 2*x)) + (117315*ArcSinh[(1 - 4*x)/Sqrt[23]])
/(512*Sqrt[2]) - (12670805*ArcTanh[(17 - 22*x)/(12*Sqrt[2]*Sqrt[3 - x + 2*x^2])])/(55296*Sqrt[2])

Rule 1650

Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = Polynomia
lQuotient[Pq, d + e*x, x], R = PolynomialRemainder[Pq, d + e*x, x]}, Simp[(e*R*(d + e*x)^(m + 1)*(a + b*x + c*
x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m + 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^
(m + 1)*(a + b*x + c*x^2)^p*ExpandToSum[(m + 1)*(c*d^2 - b*d*e + a*e^2)*Q + c*d*R*(m + 1) - b*e*R*(m + p + 2)
- c*e*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, c, d, e, p}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] &&
NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1]

Rule 1653

Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq
, x], f = Coeff[Pq, x, Expon[Pq, x]]}, Simp[(f*(d + e*x)^(m + q - 1)*(a + b*x + c*x^2)^(p + 1))/(c*e^(q - 1)*(
m + q + 2*p + 1)), x] + Dist[1/(c*e^q*(m + q + 2*p + 1)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p*ExpandToSum[c*e^
q*(m + q + 2*p + 1)*Pq - c*f*(m + q + 2*p + 1)*(d + e*x)^q - f*(d + e*x)^(q - 2)*(b*d*e*(p + 1) + a*e^2*(m + q
- 1) - c*d^2*(m + q + 2*p + 1) - e*(2*c*d - b*e)*(m + q + p)*x), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p +
1, 0]] /; FreeQ[{a, b, c, d, e, m, p}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2
, 0] &&  !(IGtQ[m, 0] && RationalQ[a, b, c, d, e] && (IntegerQ[p] || ILtQ[p + 1/2, 0]))

Rule 814

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*(a + b*x + c*x^
2)^p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), x] - Dist[p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a
+ b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2*a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p -
c*d - 2*c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c^2*d^2*(1 + 2*p) - c*e*(b*
d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0
] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])
) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 619

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[1/(2*c*((-4*c)/(b^2 - 4*a*c))^p), Subst[Int[Si
mp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
x] && GtQ[a, 0] && PosQ[b]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{3-x+2 x^2} \left (2+x+3 x^2-x^3+5 x^4\right )}{(5+2 x)^3} \, dx &=-\frac{3667 \left (3-x+2 x^2\right )^{3/2}}{1152 (5+2 x)^2}-\frac{1}{144} \int \frac{\sqrt{3-x+2 x^2} \left (\frac{27681}{16}-\frac{14251 x}{4}+972 x^2-360 x^3\right )}{(5+2 x)^2} \, dx\\ &=-\frac{3667 \left (3-x+2 x^2\right )^{3/2}}{1152 (5+2 x)^2}+\frac{357391 \left (3-x+2 x^2\right )^{3/2}}{82944 (5+2 x)}+\frac{\int \frac{\sqrt{3-x+2 x^2} \left (\frac{1531305}{16}-\frac{492175 x}{2}+12960 x^2\right )}{5+2 x} \, dx}{10368}\\ &=\frac{5}{48} \left (3-x+2 x^2\right )^{3/2}-\frac{3667 \left (3-x+2 x^2\right )^{3/2}}{1152 (5+2 x)^2}+\frac{357391 \left (3-x+2 x^2\right )^{3/2}}{82944 (5+2 x)}+\frac{\int \frac{\left (\frac{4982715}{2}-6605940 x\right ) \sqrt{3-x+2 x^2}}{5+2 x} \, dx}{248832}\\ &=\frac{5 (661065-110099 x) \sqrt{3-x+2 x^2}}{82944}+\frac{5}{48} \left (3-x+2 x^2\right )^{3/2}-\frac{3667 \left (3-x+2 x^2\right )^{3/2}}{1152 (5+2 x)^2}+\frac{357391 \left (3-x+2 x^2\right )^{3/2}}{82944 (5+2 x)}-\frac{\int \frac{-1825161120+3648965760 x}{(5+2 x) \sqrt{3-x+2 x^2}} \, dx}{7962624}\\ &=\frac{5 (661065-110099 x) \sqrt{3-x+2 x^2}}{82944}+\frac{5}{48} \left (3-x+2 x^2\right )^{3/2}-\frac{3667 \left (3-x+2 x^2\right )^{3/2}}{1152 (5+2 x)^2}+\frac{357391 \left (3-x+2 x^2\right )^{3/2}}{82944 (5+2 x)}-\frac{117315}{512} \int \frac{1}{\sqrt{3-x+2 x^2}} \, dx+\frac{12670805 \int \frac{1}{(5+2 x) \sqrt{3-x+2 x^2}} \, dx}{9216}\\ &=\frac{5 (661065-110099 x) \sqrt{3-x+2 x^2}}{82944}+\frac{5}{48} \left (3-x+2 x^2\right )^{3/2}-\frac{3667 \left (3-x+2 x^2\right )^{3/2}}{1152 (5+2 x)^2}+\frac{357391 \left (3-x+2 x^2\right )^{3/2}}{82944 (5+2 x)}-\frac{12670805 \operatorname{Subst}\left (\int \frac{1}{288-x^2} \, dx,x,\frac{17-22 x}{\sqrt{3-x+2 x^2}}\right )}{4608}-\frac{117315 \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+\frac{x^2}{23}}} \, dx,x,-1+4 x\right )}{512 \sqrt{46}}\\ &=\frac{5 (661065-110099 x) \sqrt{3-x+2 x^2}}{82944}+\frac{5}{48} \left (3-x+2 x^2\right )^{3/2}-\frac{3667 \left (3-x+2 x^2\right )^{3/2}}{1152 (5+2 x)^2}+\frac{357391 \left (3-x+2 x^2\right )^{3/2}}{82944 (5+2 x)}+\frac{117315 \sinh ^{-1}\left (\frac{1-4 x}{\sqrt{23}}\right )}{512 \sqrt{2}}-\frac{12670805 \tanh ^{-1}\left (\frac{17-22 x}{12 \sqrt{2} \sqrt{3-x+2 x^2}}\right )}{55296 \sqrt{2}}\\ \end{align*}

Mathematica [A]  time = 0.155759, size = 98, normalized size = 0.65 $\frac{\frac{24 \sqrt{2 x^2-x+3} \left (3840 x^4-25632 x^3+272520 x^2+2959330 x+4880551\right )}{(2 x+5)^2}-12670805 \sqrt{2} \tanh ^{-1}\left (\frac{17-22 x}{12 \sqrt{4 x^2-2 x+6}}\right )+12670020 \sqrt{2} \sinh ^{-1}\left (\frac{1-4 x}{\sqrt{23}}\right )}{110592}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(Sqrt[3 - x + 2*x^2]*(2 + x + 3*x^2 - x^3 + 5*x^4))/(5 + 2*x)^3,x]

[Out]

((24*Sqrt[3 - x + 2*x^2]*(4880551 + 2959330*x + 272520*x^2 - 25632*x^3 + 3840*x^4))/(5 + 2*x)^2 + 12670020*Sqr
t[2]*ArcSinh[(1 - 4*x)/Sqrt[23]] - 12670805*Sqrt[2]*ArcTanh[(17 - 22*x)/(12*Sqrt[6 - 2*x + 4*x^2])])/110592

________________________________________________________________________________________

Maple [A]  time = 0.063, size = 158, normalized size = 1.1 \begin{align*}{\frac{5}{48} \left ( 2\,{x}^{2}-x+3 \right ) ^{{\frac{3}{2}}}}-{\frac{-149+596\,x}{256}\sqrt{2\,{x}^{2}-x+3}}-{\frac{117315\,\sqrt{2}}{1024}{\it Arcsinh} \left ({\frac{4\,\sqrt{23}}{23} \left ( x-{\frac{1}{4}} \right ) } \right ) }-{\frac{3667}{4608} \left ( 2\, \left ( x+5/2 \right ) ^{2}-11\,x-{\frac{19}{2}} \right ) ^{{\frac{3}{2}}} \left ( x+{\frac{5}{2}} \right ) ^{-2}}+{\frac{357391}{165888} \left ( 2\, \left ( x+5/2 \right ) ^{2}-11\,x-{\frac{19}{2}} \right ) ^{{\frac{3}{2}}} \left ( x+{\frac{5}{2}} \right ) ^{-1}}+{\frac{12670805}{331776}\sqrt{2\, \left ( x+5/2 \right ) ^{2}-11\,x-{\frac{19}{2}}}}-{\frac{12670805\,\sqrt{2}}{110592}{\it Artanh} \left ({\frac{\sqrt{2}}{12} \left ({\frac{17}{2}}-11\,x \right ){\frac{1}{\sqrt{2\, \left ( x+5/2 \right ) ^{2}-11\,x-{\frac{19}{2}}}}}} \right ) }-{\frac{-357391+1429564\,x}{331776}\sqrt{2\, \left ( x+5/2 \right ) ^{2}-11\,x-{\frac{19}{2}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((5*x^4-x^3+3*x^2+x+2)*(2*x^2-x+3)^(1/2)/(5+2*x)^3,x)

[Out]

5/48*(2*x^2-x+3)^(3/2)-149/256*(-1+4*x)*(2*x^2-x+3)^(1/2)-117315/1024*2^(1/2)*arcsinh(4/23*23^(1/2)*(x-1/4))-3
667/4608/(x+5/2)^2*(2*(x+5/2)^2-11*x-19/2)^(3/2)+357391/165888/(x+5/2)*(2*(x+5/2)^2-11*x-19/2)^(3/2)+12670805/
331776*(2*(x+5/2)^2-11*x-19/2)^(1/2)-12670805/110592*2^(1/2)*arctanh(1/12*(17/2-11*x)*2^(1/2)/(2*(x+5/2)^2-11*
x-19/2)^(1/2))-357391/331776*(-1+4*x)*(2*(x+5/2)^2-11*x-19/2)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.50259, size = 193, normalized size = 1.28 \begin{align*} \frac{5}{48} \,{\left (2 \, x^{2} - x + 3\right )}^{\frac{3}{2}} - \frac{149}{64} \, \sqrt{2 \, x^{2} - x + 3} x - \frac{117315}{1024} \, \sqrt{2} \operatorname{arsinh}\left (\frac{4}{23} \, \sqrt{23} x - \frac{1}{23} \, \sqrt{23}\right ) + \frac{12670805}{110592} \, \sqrt{2} \operatorname{arsinh}\left (\frac{22 \, \sqrt{23} x}{23 \,{\left | 2 \, x + 5 \right |}} - \frac{17 \, \sqrt{23}}{23 \,{\left | 2 \, x + 5 \right |}}\right ) + \frac{3877}{144} \, \sqrt{2 \, x^{2} - x + 3} - \frac{3667 \,{\left (2 \, x^{2} - x + 3\right )}^{\frac{3}{2}}}{1152 \,{\left (4 \, x^{2} + 20 \, x + 25\right )}} + \frac{357391 \, \sqrt{2 \, x^{2} - x + 3}}{4608 \,{\left (2 \, x + 5\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^4-x^3+3*x^2+x+2)*(2*x^2-x+3)^(1/2)/(5+2*x)^3,x, algorithm="maxima")

[Out]

5/48*(2*x^2 - x + 3)^(3/2) - 149/64*sqrt(2*x^2 - x + 3)*x - 117315/1024*sqrt(2)*arcsinh(4/23*sqrt(23)*x - 1/23
*sqrt(23)) + 12670805/110592*sqrt(2)*arcsinh(22/23*sqrt(23)*x/abs(2*x + 5) - 17/23*sqrt(23)/abs(2*x + 5)) + 38
77/144*sqrt(2*x^2 - x + 3) - 3667/1152*(2*x^2 - x + 3)^(3/2)/(4*x^2 + 20*x + 25) + 357391/4608*sqrt(2*x^2 - x
+ 3)/(2*x + 5)

________________________________________________________________________________________

Fricas [A]  time = 1.41095, size = 479, normalized size = 3.17 \begin{align*} \frac{12670020 \, \sqrt{2}{\left (4 \, x^{2} + 20 \, x + 25\right )} \log \left (4 \, \sqrt{2} \sqrt{2 \, x^{2} - x + 3}{\left (4 \, x - 1\right )} - 32 \, x^{2} + 16 \, x - 25\right ) + 12670805 \, \sqrt{2}{\left (4 \, x^{2} + 20 \, x + 25\right )} \log \left (-\frac{24 \, \sqrt{2} \sqrt{2 \, x^{2} - x + 3}{\left (22 \, x - 17\right )} + 1060 \, x^{2} - 1036 \, x + 1153}{4 \, x^{2} + 20 \, x + 25}\right ) + 48 \,{\left (3840 \, x^{4} - 25632 \, x^{3} + 272520 \, x^{2} + 2959330 \, x + 4880551\right )} \sqrt{2 \, x^{2} - x + 3}}{221184 \,{\left (4 \, x^{2} + 20 \, x + 25\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^4-x^3+3*x^2+x+2)*(2*x^2-x+3)^(1/2)/(5+2*x)^3,x, algorithm="fricas")

[Out]

1/221184*(12670020*sqrt(2)*(4*x^2 + 20*x + 25)*log(4*sqrt(2)*sqrt(2*x^2 - x + 3)*(4*x - 1) - 32*x^2 + 16*x - 2
5) + 12670805*sqrt(2)*(4*x^2 + 20*x + 25)*log(-(24*sqrt(2)*sqrt(2*x^2 - x + 3)*(22*x - 17) + 1060*x^2 - 1036*x
+ 1153)/(4*x^2 + 20*x + 25)) + 48*(3840*x^4 - 25632*x^3 + 272520*x^2 + 2959330*x + 4880551)*sqrt(2*x^2 - x +
3))/(4*x^2 + 20*x + 25)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{2 x^{2} - x + 3} \left (5 x^{4} - x^{3} + 3 x^{2} + x + 2\right )}{\left (2 x + 5\right )^{3}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x**4-x**3+3*x**2+x+2)*(2*x**2-x+3)**(1/2)/(5+2*x)**3,x)

[Out]

Integral(sqrt(2*x**2 - x + 3)*(5*x**4 - x**3 + 3*x**2 + x + 2)/(2*x + 5)**3, x)

________________________________________________________________________________________

Giac [B]  time = 1.27493, size = 348, normalized size = 2.3 \begin{align*} \frac{1}{768} \,{\left (4 \,{\left (40 \, x - 467\right )} x + 19695\right )} \sqrt{2 \, x^{2} - x + 3} + \frac{117315}{1024} \, \sqrt{2} \log \left (-2 \, \sqrt{2}{\left (\sqrt{2} x - \sqrt{2 \, x^{2} - x + 3}\right )} + 1\right ) - \frac{12670805}{110592} \, \sqrt{2} \log \left ({\left | -2 \, \sqrt{2} x + \sqrt{2} + 2 \, \sqrt{2 \, x^{2} - x + 3} \right |}\right ) + \frac{12670805}{110592} \, \sqrt{2} \log \left ({\left | -2 \, \sqrt{2} x - 11 \, \sqrt{2} + 2 \, \sqrt{2 \, x^{2} - x + 3} \right |}\right ) + \frac{\sqrt{2}{\left (10693526 \, \sqrt{2}{\left (\sqrt{2} x - \sqrt{2 \, x^{2} - x + 3}\right )}^{3} + 79895946 \,{\left (\sqrt{2} x - \sqrt{2 \, x^{2} - x + 3}\right )}^{2} - 124044603 \, \sqrt{2}{\left (\sqrt{2} x - \sqrt{2 \, x^{2} - x + 3}\right )} + 80334011\right )}}{9216 \,{\left (2 \,{\left (\sqrt{2} x - \sqrt{2 \, x^{2} - x + 3}\right )}^{2} + 10 \, \sqrt{2}{\left (\sqrt{2} x - \sqrt{2 \, x^{2} - x + 3}\right )} - 11\right )}^{2}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^4-x^3+3*x^2+x+2)*(2*x^2-x+3)^(1/2)/(5+2*x)^3,x, algorithm="giac")

[Out]

1/768*(4*(40*x - 467)*x + 19695)*sqrt(2*x^2 - x + 3) + 117315/1024*sqrt(2)*log(-2*sqrt(2)*(sqrt(2)*x - sqrt(2*
x^2 - x + 3)) + 1) - 12670805/110592*sqrt(2)*log(abs(-2*sqrt(2)*x + sqrt(2) + 2*sqrt(2*x^2 - x + 3))) + 126708
05/110592*sqrt(2)*log(abs(-2*sqrt(2)*x - 11*sqrt(2) + 2*sqrt(2*x^2 - x + 3))) + 1/9216*sqrt(2)*(10693526*sqrt(
2)*(sqrt(2)*x - sqrt(2*x^2 - x + 3))^3 + 79895946*(sqrt(2)*x - sqrt(2*x^2 - x + 3))^2 - 124044603*sqrt(2)*(sqr
t(2)*x - sqrt(2*x^2 - x + 3)) + 80334011)/(2*(sqrt(2)*x - sqrt(2*x^2 - x + 3))^2 + 10*sqrt(2)*(sqrt(2)*x - sqr
t(2*x^2 - x + 3)) - 11)^2