Optimal. Leaf size=143 \[ \frac{2}{21} \left (3 x^2-x+2\right )^{3/2} (2 x+1)^4+\frac{67}{378} \left (3 x^2-x+2\right )^{3/2} (2 x+1)^3+\frac{17}{105} \left (3 x^2-x+2\right )^{3/2} (2 x+1)^2-\frac{(26982 x+75295) \left (3 x^2-x+2\right )^{3/2}}{68040}+\frac{5393 (1-6 x) \sqrt{3 x^2-x+2}}{15552}+\frac{124039 \sinh ^{-1}\left (\frac{1-6 x}{\sqrt{23}}\right )}{31104 \sqrt{3}} \]
[Out]
________________________________________________________________________________________
Rubi [A] time = 0.138362, antiderivative size = 143, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.188, Rules used = {1653, 832, 779, 612, 619, 215} \[ \frac{2}{21} \left (3 x^2-x+2\right )^{3/2} (2 x+1)^4+\frac{67}{378} \left (3 x^2-x+2\right )^{3/2} (2 x+1)^3+\frac{17}{105} \left (3 x^2-x+2\right )^{3/2} (2 x+1)^2-\frac{(26982 x+75295) \left (3 x^2-x+2\right )^{3/2}}{68040}+\frac{5393 (1-6 x) \sqrt{3 x^2-x+2}}{15552}+\frac{124039 \sinh ^{-1}\left (\frac{1-6 x}{\sqrt{23}}\right )}{31104 \sqrt{3}} \]
Antiderivative was successfully verified.
[In]
[Out]
Rule 1653
Rule 832
Rule 779
Rule 612
Rule 619
Rule 215
Rubi steps
\begin{align*} \int (1+2 x)^3 \sqrt{2-x+3 x^2} \left (1+3 x+4 x^2\right ) \, dx &=\frac{2}{21} (1+2 x)^4 \left (2-x+3 x^2\right )^{3/2}+\frac{1}{84} \int (1+2 x)^3 (-32+268 x) \sqrt{2-x+3 x^2} \, dx\\ &=\frac{67}{378} (1+2 x)^3 \left (2-x+3 x^2\right )^{3/2}+\frac{2}{21} (1+2 x)^4 \left (2-x+3 x^2\right )^{3/2}+\frac{\int (1+2 x)^2 (-3390+3672 x) \sqrt{2-x+3 x^2} \, dx}{1512}\\ &=\frac{17}{105} (1+2 x)^2 \left (2-x+3 x^2\right )^{3/2}+\frac{67}{378} (1+2 x)^3 \left (2-x+3 x^2\right )^{3/2}+\frac{2}{21} (1+2 x)^4 \left (2-x+3 x^2\right )^{3/2}+\frac{\int (-74718-53964 x) (1+2 x) \sqrt{2-x+3 x^2} \, dx}{22680}\\ &=\frac{17}{105} (1+2 x)^2 \left (2-x+3 x^2\right )^{3/2}+\frac{67}{378} (1+2 x)^3 \left (2-x+3 x^2\right )^{3/2}+\frac{2}{21} (1+2 x)^4 \left (2-x+3 x^2\right )^{3/2}-\frac{(75295+26982 x) \left (2-x+3 x^2\right )^{3/2}}{68040}-\frac{5393 \int \sqrt{2-x+3 x^2} \, dx}{1296}\\ &=\frac{5393 (1-6 x) \sqrt{2-x+3 x^2}}{15552}+\frac{17}{105} (1+2 x)^2 \left (2-x+3 x^2\right )^{3/2}+\frac{67}{378} (1+2 x)^3 \left (2-x+3 x^2\right )^{3/2}+\frac{2}{21} (1+2 x)^4 \left (2-x+3 x^2\right )^{3/2}-\frac{(75295+26982 x) \left (2-x+3 x^2\right )^{3/2}}{68040}-\frac{124039 \int \frac{1}{\sqrt{2-x+3 x^2}} \, dx}{31104}\\ &=\frac{5393 (1-6 x) \sqrt{2-x+3 x^2}}{15552}+\frac{17}{105} (1+2 x)^2 \left (2-x+3 x^2\right )^{3/2}+\frac{67}{378} (1+2 x)^3 \left (2-x+3 x^2\right )^{3/2}+\frac{2}{21} (1+2 x)^4 \left (2-x+3 x^2\right )^{3/2}-\frac{(75295+26982 x) \left (2-x+3 x^2\right )^{3/2}}{68040}-\frac{\left (5393 \sqrt{\frac{23}{3}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+\frac{x^2}{23}}} \, dx,x,-1+6 x\right )}{31104}\\ &=\frac{5393 (1-6 x) \sqrt{2-x+3 x^2}}{15552}+\frac{17}{105} (1+2 x)^2 \left (2-x+3 x^2\right )^{3/2}+\frac{67}{378} (1+2 x)^3 \left (2-x+3 x^2\right )^{3/2}+\frac{2}{21} (1+2 x)^4 \left (2-x+3 x^2\right )^{3/2}-\frac{(75295+26982 x) \left (2-x+3 x^2\right )^{3/2}}{68040}+\frac{124039 \sinh ^{-1}\left (\frac{1-6 x}{\sqrt{23}}\right )}{31104 \sqrt{3}}\\ \end{align*}
Mathematica [A] time = 0.0474035, size = 70, normalized size = 0.49 \[ \frac{6 \sqrt{3 x^2-x+2} \left (2488320 x^6+6462720 x^5+7491456 x^4+5497776 x^3+3280872 x^2+1493894 x-543069\right )-4341365 \sqrt{3} \sinh ^{-1}\left (\frac{6 x-1}{\sqrt{23}}\right )}{3265920} \]
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
Maple [A] time = 0.057, size = 115, normalized size = 0.8 \begin{align*}{\frac{32\,{x}^{4}}{21} \left ( 3\,{x}^{2}-x+2 \right ) ^{{\frac{3}{2}}}}+{\frac{844\,{x}^{3}}{189} \left ( 3\,{x}^{2}-x+2 \right ) ^{{\frac{3}{2}}}}+{\frac{1594\,{x}^{2}}{315} \left ( 3\,{x}^{2}-x+2 \right ) ^{{\frac{3}{2}}}}+{\frac{7849\,x}{3780} \left ( 3\,{x}^{2}-x+2 \right ) ^{{\frac{3}{2}}}}-{\frac{-5393+32358\,x}{15552}\sqrt{3\,{x}^{2}-x+2}}-{\frac{124039\,\sqrt{3}}{93312}{\it Arcsinh} \left ({\frac{6\,\sqrt{23}}{23} \left ( x-{\frac{1}{6}} \right ) } \right ) }-{\frac{45739}{68040} \left ( 3\,{x}^{2}-x+2 \right ) ^{{\frac{3}{2}}}} \end{align*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
Maxima [A] time = 1.52799, size = 170, normalized size = 1.19 \begin{align*} \frac{32}{21} \,{\left (3 \, x^{2} - x + 2\right )}^{\frac{3}{2}} x^{4} + \frac{844}{189} \,{\left (3 \, x^{2} - x + 2\right )}^{\frac{3}{2}} x^{3} + \frac{1594}{315} \,{\left (3 \, x^{2} - x + 2\right )}^{\frac{3}{2}} x^{2} + \frac{7849}{3780} \,{\left (3 \, x^{2} - x + 2\right )}^{\frac{3}{2}} x - \frac{45739}{68040} \,{\left (3 \, x^{2} - x + 2\right )}^{\frac{3}{2}} - \frac{5393}{2592} \, \sqrt{3 \, x^{2} - x + 2} x - \frac{124039}{93312} \, \sqrt{3} \operatorname{arsinh}\left (\frac{1}{23} \, \sqrt{23}{\left (6 \, x - 1\right )}\right ) + \frac{5393}{15552} \, \sqrt{3 \, x^{2} - x + 2} \end{align*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
Fricas [A] time = 1.90773, size = 285, normalized size = 1.99 \begin{align*} \frac{1}{544320} \,{\left (2488320 \, x^{6} + 6462720 \, x^{5} + 7491456 \, x^{4} + 5497776 \, x^{3} + 3280872 \, x^{2} + 1493894 \, x - 543069\right )} \sqrt{3 \, x^{2} - x + 2} + \frac{124039}{186624} \, \sqrt{3} \log \left (4 \, \sqrt{3} \sqrt{3 \, x^{2} - x + 2}{\left (6 \, x - 1\right )} - 72 \, x^{2} + 24 \, x - 25\right ) \end{align*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
Sympy [F] time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (2 x + 1\right )^{3} \sqrt{3 x^{2} - x + 2} \left (4 x^{2} + 3 x + 1\right )\, dx \end{align*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
Giac [A] time = 1.34908, size = 105, normalized size = 0.73 \begin{align*} \frac{1}{544320} \,{\left (2 \,{\left (12 \,{\left (6 \,{\left (8 \,{\left (30 \,{\left (72 \, x + 187\right )} x + 6503\right )} x + 38179\right )} x + 136703\right )} x + 746947\right )} x - 543069\right )} \sqrt{3 \, x^{2} - x + 2} + \frac{124039}{93312} \, \sqrt{3} \log \left (-2 \, \sqrt{3}{\left (\sqrt{3} x - \sqrt{3 \, x^{2} - x + 2}\right )} + 1\right ) \end{align*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]