### 3.986 $$\int \frac{c d^2+2 c d e x+c e^2 x^2}{(d+e x)^6} \, dx$$

Optimal. Leaf size=15 $-\frac{c}{3 e (d+e x)^3}$

[Out]

-c/(3*e*(d + e*x)^3)

________________________________________________________________________________________

Rubi [A]  time = 0.0063929, antiderivative size = 15, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 28, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.107, Rules used = {24, 21, 32} $-\frac{c}{3 e (d+e x)^3}$

Antiderivative was successfully veriﬁed.

[In]

Int[(c*d^2 + 2*c*d*e*x + c*e^2*x^2)/(d + e*x)^6,x]

[Out]

-c/(3*e*(d + e*x)^3)

Rule 24

Int[(u_.)*((a_) + (b_.)*(v_))^(m_)*((A_.) + (B_.)*(v_) + (C_.)*(v_)^2), x_Symbol] :> Dist[1/b^2, Int[u*(a + b*
v)^(m + 1)*Simp[b*B - a*C + b*C*v, x], x], x] /; FreeQ[{a, b, A, B, C}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0] &&
LeQ[m, -1]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
d*x, a + b*x])

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin{align*} \int \frac{c d^2+2 c d e x+c e^2 x^2}{(d+e x)^6} \, dx &=\frac{\int \frac{c d e^2+c e^3 x}{(d+e x)^5} \, dx}{e^2}\\ &=c \int \frac{1}{(d+e x)^4} \, dx\\ &=-\frac{c}{3 e (d+e x)^3}\\ \end{align*}

Mathematica [A]  time = 0.0036726, size = 15, normalized size = 1. $-\frac{c}{3 e (d+e x)^3}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(c*d^2 + 2*c*d*e*x + c*e^2*x^2)/(d + e*x)^6,x]

[Out]

-c/(3*e*(d + e*x)^3)

________________________________________________________________________________________

Maple [A]  time = 0.04, size = 14, normalized size = 0.9 \begin{align*} -{\frac{c}{3\,e \left ( ex+d \right ) ^{3}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*e^2*x^2+2*c*d*e*x+c*d^2)/(e*x+d)^6,x)

[Out]

-1/3*c/e/(e*x+d)^3

________________________________________________________________________________________

Maxima [B]  time = 1.14637, size = 49, normalized size = 3.27 \begin{align*} -\frac{c}{3 \,{\left (e^{4} x^{3} + 3 \, d e^{3} x^{2} + 3 \, d^{2} e^{2} x + d^{3} e\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)/(e*x+d)^6,x, algorithm="maxima")

[Out]

-1/3*c/(e^4*x^3 + 3*d*e^3*x^2 + 3*d^2*e^2*x + d^3*e)

________________________________________________________________________________________

Fricas [B]  time = 1.97777, size = 73, normalized size = 4.87 \begin{align*} -\frac{c}{3 \,{\left (e^{4} x^{3} + 3 \, d e^{3} x^{2} + 3 \, d^{2} e^{2} x + d^{3} e\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)/(e*x+d)^6,x, algorithm="fricas")

[Out]

-1/3*c/(e^4*x^3 + 3*d*e^3*x^2 + 3*d^2*e^2*x + d^3*e)

________________________________________________________________________________________

Sympy [B]  time = 0.488633, size = 37, normalized size = 2.47 \begin{align*} - \frac{c}{3 d^{3} e + 9 d^{2} e^{2} x + 9 d e^{3} x^{2} + 3 e^{4} x^{3}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e**2*x**2+2*c*d*e*x+c*d**2)/(e*x+d)**6,x)

[Out]

-c/(3*d**3*e + 9*d**2*e**2*x + 9*d*e**3*x**2 + 3*e**4*x**3)

________________________________________________________________________________________

Giac [B]  time = 1.2113, size = 46, normalized size = 3.07 \begin{align*} -\frac{{\left (c x^{2} e^{4} + 2 \, c d x e^{3} + c d^{2} e^{2}\right )} e^{\left (-3\right )}}{3 \,{\left (x e + d\right )}^{5}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)/(e*x+d)^6,x, algorithm="giac")

[Out]

-1/3*(c*x^2*e^4 + 2*c*d*x*e^3 + c*d^2*e^2)*e^(-3)/(x*e + d)^5