### 3.965 $$\int \frac{(1-\frac{e^2 x^2}{d^2})^p}{(d+e x)^2} \, dx$$

Optimal. Leaf size=57 $-\frac{2^{p-2} \left (\frac{d-e x}{d}\right )^{p+1} \, _2F_1\left (2-p,p+1;p+2;\frac{d-e x}{2 d}\right )}{d e (p+1)}$

[Out]

-((2^(-2 + p)*((d - e*x)/d)^(1 + p)*Hypergeometric2F1[2 - p, 1 + p, 2 + p, (d - e*x)/(2*d)])/(d*e*(1 + p)))

________________________________________________________________________________________

Rubi [A]  time = 0.0396949, antiderivative size = 57, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 23, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.087, Rules used = {676, 69} $-\frac{2^{p-2} \left (\frac{d-e x}{d}\right )^{p+1} \, _2F_1\left (2-p,p+1;p+2;\frac{d-e x}{2 d}\right )}{d e (p+1)}$

Antiderivative was successfully veriﬁed.

[In]

Int[(1 - (e^2*x^2)/d^2)^p/(d + e*x)^2,x]

[Out]

-((2^(-2 + p)*((d - e*x)/d)^(1 + p)*Hypergeometric2F1[2 - p, 1 + p, 2 + p, (d - e*x)/(2*d)])/(d*e*(1 + p)))

Rule 676

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a^(p + 1)*d^(m - 1)*((d - e*x)/d)^
(p + 1))/(a/d + (c*x)/e)^(p + 1), Int[(1 + (e*x)/d)^(m + p)*(a/d + (c*x)/e)^p, x], x] /; FreeQ[{a, c, d, e, m}
, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && (IntegerQ[m] || GtQ[d, 0]) && GtQ[a, 0] &&  !(IGtQ[m, 0] &&
(IntegerQ[3*p] || IntegerQ[4*p]))

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rubi steps

\begin{align*} \int \frac{\left (1-\frac{e^2 x^2}{d^2}\right )^p}{(d+e x)^2} \, dx &=\frac{\left (\left (\frac{d-e x}{d}\right )^{1+p} \left (\frac{1}{d}-\frac{e x}{d^2}\right )^{-1-p}\right ) \int \left (\frac{1}{d}-\frac{e x}{d^2}\right )^p \left (1+\frac{e x}{d}\right )^{-2+p} \, dx}{d^3}\\ &=-\frac{2^{-2+p} \left (\frac{d-e x}{d}\right )^{1+p} \, _2F_1\left (2-p,1+p;2+p;\frac{d-e x}{2 d}\right )}{d e (1+p)}\\ \end{align*}

Mathematica [A]  time = 0.0784986, size = 76, normalized size = 1.33 $-\frac{2^{p-2} (d-e x) \left (\frac{e x}{d}+1\right )^{-p} \left (1-\frac{e^2 x^2}{d^2}\right )^p \, _2F_1\left (2-p,p+1;p+2;\frac{d-e x}{2 d}\right )}{d^2 e (p+1)}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(1 - (e^2*x^2)/d^2)^p/(d + e*x)^2,x]

[Out]

-((2^(-2 + p)*(d - e*x)*(1 - (e^2*x^2)/d^2)^p*Hypergeometric2F1[2 - p, 1 + p, 2 + p, (d - e*x)/(2*d)])/(d^2*e*
(1 + p)*(1 + (e*x)/d)^p))

________________________________________________________________________________________

Maple [F]  time = 0.546, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{ \left ( ex+d \right ) ^{2}} \left ( 1-{\frac{{e}^{2}{x}^{2}}{{d}^{2}}} \right ) ^{p}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((1-e^2*x^2/d^2)^p/(e*x+d)^2,x)

[Out]

int((1-e^2*x^2/d^2)^p/(e*x+d)^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-\frac{e^{2} x^{2}}{d^{2}} + 1\right )}^{p}}{{\left (e x + d\right )}^{2}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-e^2*x^2/d^2)^p/(e*x+d)^2,x, algorithm="maxima")

[Out]

integrate((-e^2*x^2/d^2 + 1)^p/(e*x + d)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\left (-\frac{e^{2} x^{2} - d^{2}}{d^{2}}\right )^{p}}{e^{2} x^{2} + 2 \, d e x + d^{2}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-e^2*x^2/d^2)^p/(e*x+d)^2,x, algorithm="fricas")

[Out]

integral((-(e^2*x^2 - d^2)/d^2)^p/(e^2*x^2 + 2*d*e*x + d^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (- \left (-1 + \frac{e x}{d}\right ) \left (1 + \frac{e x}{d}\right )\right )^{p}}{\left (d + e x\right )^{2}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-e**2*x**2/d**2)**p/(e*x+d)**2,x)

[Out]

Integral((-(-1 + e*x/d)*(1 + e*x/d))**p/(d + e*x)**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-\frac{e^{2} x^{2}}{d^{2}} + 1\right )}^{p}}{{\left (e x + d\right )}^{2}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-e^2*x^2/d^2)^p/(e*x+d)^2,x, algorithm="giac")

[Out]

integrate((-e^2*x^2/d^2 + 1)^p/(e*x + d)^2, x)