### 3.876 $$\int \frac{(c d^2-c e^2 x^2)^{3/2}}{(d+e x)^{9/2}} \, dx$$

Optimal. Leaf size=139 $-\frac{3 c^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c d^2-c e^2 x^2}}{\sqrt{2} \sqrt{c} \sqrt{d} \sqrt{d+e x}}\right )}{4 \sqrt{2} \sqrt{d} e}+\frac{3 c \sqrt{c d^2-c e^2 x^2}}{4 e (d+e x)^{3/2}}-\frac{\left (c d^2-c e^2 x^2\right )^{3/2}}{2 e (d+e x)^{7/2}}$

[Out]

(3*c*Sqrt[c*d^2 - c*e^2*x^2])/(4*e*(d + e*x)^(3/2)) - (c*d^2 - c*e^2*x^2)^(3/2)/(2*e*(d + e*x)^(7/2)) - (3*c^(
3/2)*ArcTanh[Sqrt[c*d^2 - c*e^2*x^2]/(Sqrt[2]*Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])])/(4*Sqrt[2]*Sqrt[d]*e)

________________________________________________________________________________________

Rubi [A]  time = 0.0706147, antiderivative size = 139, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 29, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.103, Rules used = {663, 661, 208} $-\frac{3 c^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c d^2-c e^2 x^2}}{\sqrt{2} \sqrt{c} \sqrt{d} \sqrt{d+e x}}\right )}{4 \sqrt{2} \sqrt{d} e}+\frac{3 c \sqrt{c d^2-c e^2 x^2}}{4 e (d+e x)^{3/2}}-\frac{\left (c d^2-c e^2 x^2\right )^{3/2}}{2 e (d+e x)^{7/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(c*d^2 - c*e^2*x^2)^(3/2)/(d + e*x)^(9/2),x]

[Out]

(3*c*Sqrt[c*d^2 - c*e^2*x^2])/(4*e*(d + e*x)^(3/2)) - (c*d^2 - c*e^2*x^2)^(3/2)/(2*e*(d + e*x)^(7/2)) - (3*c^(
3/2)*ArcTanh[Sqrt[c*d^2 - c*e^2*x^2]/(Sqrt[2]*Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])])/(4*Sqrt[2]*Sqrt[d]*e)

Rule 663

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(a + c*x^2)^p)/(
e*(m + p + 1)), x] - Dist[(c*p)/(e^2*(m + p + 1)), Int[(d + e*x)^(m + 2)*(a + c*x^2)^(p - 1), x], x] /; FreeQ[
{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (LtQ[m, -2] || EqQ[m + 2*p + 1, 0]) && NeQ[m + p + 1
, 0] && IntegerQ[2*p]

Rule 661

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(2*c*d + e^2*x^2
), x], x, Sqrt[a + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (c d^2-c e^2 x^2\right )^{3/2}}{(d+e x)^{9/2}} \, dx &=-\frac{\left (c d^2-c e^2 x^2\right )^{3/2}}{2 e (d+e x)^{7/2}}-\frac{1}{4} (3 c) \int \frac{\sqrt{c d^2-c e^2 x^2}}{(d+e x)^{5/2}} \, dx\\ &=\frac{3 c \sqrt{c d^2-c e^2 x^2}}{4 e (d+e x)^{3/2}}-\frac{\left (c d^2-c e^2 x^2\right )^{3/2}}{2 e (d+e x)^{7/2}}+\frac{1}{8} \left (3 c^2\right ) \int \frac{1}{\sqrt{d+e x} \sqrt{c d^2-c e^2 x^2}} \, dx\\ &=\frac{3 c \sqrt{c d^2-c e^2 x^2}}{4 e (d+e x)^{3/2}}-\frac{\left (c d^2-c e^2 x^2\right )^{3/2}}{2 e (d+e x)^{7/2}}+\frac{1}{4} \left (3 c^2 e\right ) \operatorname{Subst}\left (\int \frac{1}{-2 c d e^2+e^2 x^2} \, dx,x,\frac{\sqrt{c d^2-c e^2 x^2}}{\sqrt{d+e x}}\right )\\ &=\frac{3 c \sqrt{c d^2-c e^2 x^2}}{4 e (d+e x)^{3/2}}-\frac{\left (c d^2-c e^2 x^2\right )^{3/2}}{2 e (d+e x)^{7/2}}-\frac{3 c^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c d^2-c e^2 x^2}}{\sqrt{2} \sqrt{c} \sqrt{d} \sqrt{d+e x}}\right )}{4 \sqrt{2} \sqrt{d} e}\\ \end{align*}

Mathematica [A]  time = 0.173428, size = 109, normalized size = 0.78 $\frac{c \sqrt{c \left (d^2-e^2 x^2\right )} \left (\frac{2 (d+5 e x)}{(d+e x)^{5/2}}-\frac{3 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{d^2-e^2 x^2}}{\sqrt{2} \sqrt{d} \sqrt{d+e x}}\right )}{\sqrt{d} \sqrt{d^2-e^2 x^2}}\right )}{8 e}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(c*d^2 - c*e^2*x^2)^(3/2)/(d + e*x)^(9/2),x]

[Out]

(c*Sqrt[c*(d^2 - e^2*x^2)]*((2*(d + 5*e*x))/(d + e*x)^(5/2) - (3*Sqrt[2]*ArcTanh[Sqrt[d^2 - e^2*x^2]/(Sqrt[2]*
Sqrt[d]*Sqrt[d + e*x])])/(Sqrt[d]*Sqrt[d^2 - e^2*x^2])))/(8*e)

________________________________________________________________________________________

Maple [A]  time = 0.175, size = 190, normalized size = 1.4 \begin{align*} -{\frac{c}{8\,e}\sqrt{-c \left ({e}^{2}{x}^{2}-{d}^{2} \right ) } \left ( 3\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{- \left ( ex-d \right ) c}\sqrt{2}}{\sqrt{cd}}} \right ){x}^{2}c{e}^{2}+6\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{- \left ( ex-d \right ) c}\sqrt{2}}{\sqrt{cd}}} \right ) xcde+3\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{- \left ( ex-d \right ) c}\sqrt{2}}{\sqrt{cd}}} \right ) c{d}^{2}-10\,xe\sqrt{- \left ( ex-d \right ) c}\sqrt{cd}-2\,\sqrt{- \left ( ex-d \right ) c}\sqrt{cd}d \right ) \left ( ex+d \right ) ^{-{\frac{5}{2}}}{\frac{1}{\sqrt{- \left ( ex-d \right ) c}}}{\frac{1}{\sqrt{cd}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((-c*e^2*x^2+c*d^2)^(3/2)/(e*x+d)^(9/2),x)

[Out]

-1/8*(-c*(e^2*x^2-d^2))^(1/2)*c*(3*2^(1/2)*arctanh(1/2*(-(e*x-d)*c)^(1/2)*2^(1/2)/(c*d)^(1/2))*x^2*c*e^2+6*2^(
1/2)*arctanh(1/2*(-(e*x-d)*c)^(1/2)*2^(1/2)/(c*d)^(1/2))*x*c*d*e+3*2^(1/2)*arctanh(1/2*(-(e*x-d)*c)^(1/2)*2^(1
/2)/(c*d)^(1/2))*c*d^2-10*x*e*(-(e*x-d)*c)^(1/2)*(c*d)^(1/2)-2*(-(e*x-d)*c)^(1/2)*(c*d)^(1/2)*d)/(e*x+d)^(5/2)
/(-(e*x-d)*c)^(1/2)/e/(c*d)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-c e^{2} x^{2} + c d^{2}\right )}^{\frac{3}{2}}}{{\left (e x + d\right )}^{\frac{9}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c*e^2*x^2+c*d^2)^(3/2)/(e*x+d)^(9/2),x, algorithm="maxima")

[Out]

integrate((-c*e^2*x^2 + c*d^2)^(3/2)/(e*x + d)^(9/2), x)

________________________________________________________________________________________

Fricas [A]  time = 2.16347, size = 803, normalized size = 5.78 \begin{align*} \left [\frac{3 \, \sqrt{\frac{1}{2}}{\left (c e^{3} x^{3} + 3 \, c d e^{2} x^{2} + 3 \, c d^{2} e x + c d^{3}\right )} \sqrt{\frac{c}{d}} \log \left (-\frac{c e^{2} x^{2} - 2 \, c d e x - 3 \, c d^{2} + 4 \, \sqrt{\frac{1}{2}} \sqrt{-c e^{2} x^{2} + c d^{2}} \sqrt{e x + d} d \sqrt{\frac{c}{d}}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) + 2 \, \sqrt{-c e^{2} x^{2} + c d^{2}}{\left (5 \, c e x + c d\right )} \sqrt{e x + d}}{8 \,{\left (e^{4} x^{3} + 3 \, d e^{3} x^{2} + 3 \, d^{2} e^{2} x + d^{3} e\right )}}, -\frac{3 \, \sqrt{\frac{1}{2}}{\left (c e^{3} x^{3} + 3 \, c d e^{2} x^{2} + 3 \, c d^{2} e x + c d^{3}\right )} \sqrt{-\frac{c}{d}} \arctan \left (\frac{2 \, \sqrt{\frac{1}{2}} \sqrt{-c e^{2} x^{2} + c d^{2}} \sqrt{e x + d} d \sqrt{-\frac{c}{d}}}{c e^{2} x^{2} - c d^{2}}\right ) - \sqrt{-c e^{2} x^{2} + c d^{2}}{\left (5 \, c e x + c d\right )} \sqrt{e x + d}}{4 \,{\left (e^{4} x^{3} + 3 \, d e^{3} x^{2} + 3 \, d^{2} e^{2} x + d^{3} e\right )}}\right ] \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c*e^2*x^2+c*d^2)^(3/2)/(e*x+d)^(9/2),x, algorithm="fricas")

[Out]

[1/8*(3*sqrt(1/2)*(c*e^3*x^3 + 3*c*d*e^2*x^2 + 3*c*d^2*e*x + c*d^3)*sqrt(c/d)*log(-(c*e^2*x^2 - 2*c*d*e*x - 3*
c*d^2 + 4*sqrt(1/2)*sqrt(-c*e^2*x^2 + c*d^2)*sqrt(e*x + d)*d*sqrt(c/d))/(e^2*x^2 + 2*d*e*x + d^2)) + 2*sqrt(-c
*e^2*x^2 + c*d^2)*(5*c*e*x + c*d)*sqrt(e*x + d))/(e^4*x^3 + 3*d*e^3*x^2 + 3*d^2*e^2*x + d^3*e), -1/4*(3*sqrt(1
/2)*(c*e^3*x^3 + 3*c*d*e^2*x^2 + 3*c*d^2*e*x + c*d^3)*sqrt(-c/d)*arctan(2*sqrt(1/2)*sqrt(-c*e^2*x^2 + c*d^2)*s
qrt(e*x + d)*d*sqrt(-c/d)/(c*e^2*x^2 - c*d^2)) - sqrt(-c*e^2*x^2 + c*d^2)*(5*c*e*x + c*d)*sqrt(e*x + d))/(e^4*
x^3 + 3*d*e^3*x^2 + 3*d^2*e^2*x + d^3*e)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (- c \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac{3}{2}}}{\left (d + e x\right )^{\frac{9}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c*e**2*x**2+c*d**2)**(3/2)/(e*x+d)**(9/2),x)

[Out]

Integral((-c*(-d + e*x)*(d + e*x))**(3/2)/(d + e*x)**(9/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-c e^{2} x^{2} + c d^{2}\right )}^{\frac{3}{2}}}{{\left (e x + d\right )}^{\frac{9}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c*e^2*x^2+c*d^2)^(3/2)/(e*x+d)^(9/2),x, algorithm="giac")

[Out]

integrate((-c*e^2*x^2 + c*d^2)^(3/2)/(e*x + d)^(9/2), x)