### 3.81 $$\int \frac{\sqrt{b x+c x^2}}{x^{11/2}} \, dx$$

Optimal. Leaf size=142 $-\frac{5 c^3 \sqrt{b x+c x^2}}{64 b^3 x^{3/2}}+\frac{5 c^2 \sqrt{b x+c x^2}}{96 b^2 x^{5/2}}+\frac{5 c^4 \tanh ^{-1}\left (\frac{\sqrt{b x+c x^2}}{\sqrt{b} \sqrt{x}}\right )}{64 b^{7/2}}-\frac{c \sqrt{b x+c x^2}}{24 b x^{7/2}}-\frac{\sqrt{b x+c x^2}}{4 x^{9/2}}$

[Out]

-Sqrt[b*x + c*x^2]/(4*x^(9/2)) - (c*Sqrt[b*x + c*x^2])/(24*b*x^(7/2)) + (5*c^2*Sqrt[b*x + c*x^2])/(96*b^2*x^(5
/2)) - (5*c^3*Sqrt[b*x + c*x^2])/(64*b^3*x^(3/2)) + (5*c^4*ArcTanh[Sqrt[b*x + c*x^2]/(Sqrt[b]*Sqrt[x])])/(64*b
^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0648671, antiderivative size = 142, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 19, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.21, Rules used = {662, 672, 660, 207} $-\frac{5 c^3 \sqrt{b x+c x^2}}{64 b^3 x^{3/2}}+\frac{5 c^2 \sqrt{b x+c x^2}}{96 b^2 x^{5/2}}+\frac{5 c^4 \tanh ^{-1}\left (\frac{\sqrt{b x+c x^2}}{\sqrt{b} \sqrt{x}}\right )}{64 b^{7/2}}-\frac{c \sqrt{b x+c x^2}}{24 b x^{7/2}}-\frac{\sqrt{b x+c x^2}}{4 x^{9/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sqrt[b*x + c*x^2]/x^(11/2),x]

[Out]

-Sqrt[b*x + c*x^2]/(4*x^(9/2)) - (c*Sqrt[b*x + c*x^2])/(24*b*x^(7/2)) + (5*c^2*Sqrt[b*x + c*x^2])/(96*b^2*x^(5
/2)) - (5*c^3*Sqrt[b*x + c*x^2])/(64*b^3*x^(3/2)) + (5*c^4*ArcTanh[Sqrt[b*x + c*x^2]/(Sqrt[b]*Sqrt[x])])/(64*b
^(7/2))

Rule 662

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + p + 1)), x] - Dist[(c*p)/(e^2*(m + p + 1)), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2
)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[
p, 0] && (LtQ[m, -2] || EqQ[m + 2*p + 1, 0]) && NeQ[m + p + 1, 0] && IntegerQ[2*p]

Rule 672

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(e*(d + e*x)^m*(a +
b*x + c*x^2)^(p + 1))/((m + p + 1)*(2*c*d - b*e)), x] + Dist[(c*(m + 2*p + 2))/((m + p + 1)*(2*c*d - b*e)), I
nt[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ
[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*p]

Rule 660

Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(
2*c*d - b*e + e^2*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^
2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{b x+c x^2}}{x^{11/2}} \, dx &=-\frac{\sqrt{b x+c x^2}}{4 x^{9/2}}+\frac{1}{8} c \int \frac{1}{x^{7/2} \sqrt{b x+c x^2}} \, dx\\ &=-\frac{\sqrt{b x+c x^2}}{4 x^{9/2}}-\frac{c \sqrt{b x+c x^2}}{24 b x^{7/2}}-\frac{\left (5 c^2\right ) \int \frac{1}{x^{5/2} \sqrt{b x+c x^2}} \, dx}{48 b}\\ &=-\frac{\sqrt{b x+c x^2}}{4 x^{9/2}}-\frac{c \sqrt{b x+c x^2}}{24 b x^{7/2}}+\frac{5 c^2 \sqrt{b x+c x^2}}{96 b^2 x^{5/2}}+\frac{\left (5 c^3\right ) \int \frac{1}{x^{3/2} \sqrt{b x+c x^2}} \, dx}{64 b^2}\\ &=-\frac{\sqrt{b x+c x^2}}{4 x^{9/2}}-\frac{c \sqrt{b x+c x^2}}{24 b x^{7/2}}+\frac{5 c^2 \sqrt{b x+c x^2}}{96 b^2 x^{5/2}}-\frac{5 c^3 \sqrt{b x+c x^2}}{64 b^3 x^{3/2}}-\frac{\left (5 c^4\right ) \int \frac{1}{\sqrt{x} \sqrt{b x+c x^2}} \, dx}{128 b^3}\\ &=-\frac{\sqrt{b x+c x^2}}{4 x^{9/2}}-\frac{c \sqrt{b x+c x^2}}{24 b x^{7/2}}+\frac{5 c^2 \sqrt{b x+c x^2}}{96 b^2 x^{5/2}}-\frac{5 c^3 \sqrt{b x+c x^2}}{64 b^3 x^{3/2}}-\frac{\left (5 c^4\right ) \operatorname{Subst}\left (\int \frac{1}{-b+x^2} \, dx,x,\frac{\sqrt{b x+c x^2}}{\sqrt{x}}\right )}{64 b^3}\\ &=-\frac{\sqrt{b x+c x^2}}{4 x^{9/2}}-\frac{c \sqrt{b x+c x^2}}{24 b x^{7/2}}+\frac{5 c^2 \sqrt{b x+c x^2}}{96 b^2 x^{5/2}}-\frac{5 c^3 \sqrt{b x+c x^2}}{64 b^3 x^{3/2}}+\frac{5 c^4 \tanh ^{-1}\left (\frac{\sqrt{b x+c x^2}}{\sqrt{b} \sqrt{x}}\right )}{64 b^{7/2}}\\ \end{align*}

Mathematica [C]  time = 0.0147189, size = 42, normalized size = 0.3 $-\frac{2 c^4 (x (b+c x))^{3/2} \, _2F_1\left (\frac{3}{2},5;\frac{5}{2};\frac{c x}{b}+1\right )}{3 b^5 x^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Sqrt[b*x + c*x^2]/x^(11/2),x]

[Out]

(-2*c^4*(x*(b + c*x))^(3/2)*Hypergeometric2F1[3/2, 5, 5/2, 1 + (c*x)/b])/(3*b^5*x^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.18, size = 108, normalized size = 0.8 \begin{align*}{\frac{1}{192}\sqrt{x \left ( cx+b \right ) } \left ( 15\,{\it Artanh} \left ({\frac{\sqrt{cx+b}}{\sqrt{b}}} \right ){x}^{4}{c}^{4}-15\,{x}^{3}{c}^{3}\sqrt{cx+b}\sqrt{b}+10\,{x}^{2}{b}^{3/2}{c}^{2}\sqrt{cx+b}-8\,x{b}^{5/2}c\sqrt{cx+b}-48\,{b}^{7/2}\sqrt{cx+b} \right ){b}^{-{\frac{7}{2}}}{x}^{-{\frac{9}{2}}}{\frac{1}{\sqrt{cx+b}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x)^(1/2)/x^(11/2),x)

[Out]

1/192*(x*(c*x+b))^(1/2)/b^(7/2)*(15*arctanh((c*x+b)^(1/2)/b^(1/2))*x^4*c^4-15*x^3*c^3*(c*x+b)^(1/2)*b^(1/2)+10
*x^2*b^(3/2)*c^2*(c*x+b)^(1/2)-8*x*b^(5/2)*c*(c*x+b)^(1/2)-48*b^(7/2)*(c*x+b)^(1/2))/x^(9/2)/(c*x+b)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2} + b x}}{x^{\frac{11}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(1/2)/x^(11/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + b*x)/x^(11/2), x)

________________________________________________________________________________________

Fricas [A]  time = 2.17614, size = 477, normalized size = 3.36 \begin{align*} \left [\frac{15 \, \sqrt{b} c^{4} x^{5} \log \left (-\frac{c x^{2} + 2 \, b x + 2 \, \sqrt{c x^{2} + b x} \sqrt{b} \sqrt{x}}{x^{2}}\right ) - 2 \,{\left (15 \, b c^{3} x^{3} - 10 \, b^{2} c^{2} x^{2} + 8 \, b^{3} c x + 48 \, b^{4}\right )} \sqrt{c x^{2} + b x} \sqrt{x}}{384 \, b^{4} x^{5}}, -\frac{15 \, \sqrt{-b} c^{4} x^{5} \arctan \left (\frac{\sqrt{-b} \sqrt{x}}{\sqrt{c x^{2} + b x}}\right ) +{\left (15 \, b c^{3} x^{3} - 10 \, b^{2} c^{2} x^{2} + 8 \, b^{3} c x + 48 \, b^{4}\right )} \sqrt{c x^{2} + b x} \sqrt{x}}{192 \, b^{4} x^{5}}\right ] \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(1/2)/x^(11/2),x, algorithm="fricas")

[Out]

[1/384*(15*sqrt(b)*c^4*x^5*log(-(c*x^2 + 2*b*x + 2*sqrt(c*x^2 + b*x)*sqrt(b)*sqrt(x))/x^2) - 2*(15*b*c^3*x^3 -
10*b^2*c^2*x^2 + 8*b^3*c*x + 48*b^4)*sqrt(c*x^2 + b*x)*sqrt(x))/(b^4*x^5), -1/192*(15*sqrt(-b)*c^4*x^5*arctan
(sqrt(-b)*sqrt(x)/sqrt(c*x^2 + b*x)) + (15*b*c^3*x^3 - 10*b^2*c^2*x^2 + 8*b^3*c*x + 48*b^4)*sqrt(c*x^2 + b*x)*
sqrt(x))/(b^4*x^5)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x)**(1/2)/x**(11/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.20823, size = 113, normalized size = 0.8 \begin{align*} -\frac{1}{192} \, c^{4}{\left (\frac{15 \, \arctan \left (\frac{\sqrt{c x + b}}{\sqrt{-b}}\right )}{\sqrt{-b} b^{3}} + \frac{15 \,{\left (c x + b\right )}^{\frac{7}{2}} - 55 \,{\left (c x + b\right )}^{\frac{5}{2}} b + 73 \,{\left (c x + b\right )}^{\frac{3}{2}} b^{2} + 15 \, \sqrt{c x + b} b^{3}}{b^{3} c^{4} x^{4}}\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(1/2)/x^(11/2),x, algorithm="giac")

[Out]

-1/192*c^4*(15*arctan(sqrt(c*x + b)/sqrt(-b))/(sqrt(-b)*b^3) + (15*(c*x + b)^(7/2) - 55*(c*x + b)^(5/2)*b + 73
*(c*x + b)^(3/2)*b^2 + 15*sqrt(c*x + b)*b^3)/(b^3*c^4*x^4))