### 3.744 $$\int (d+e x)^{-5-2 p} (a+c x^2)^p \, dx$$

Optimal. Leaf size=436 $\frac{c^2 d \left (\sqrt{-a}-\sqrt{c} x\right ) \left (a+c x^2\right )^p (d+e x)^{-2 p-1} \left (3 a e^2-c d^2 (2 p+3)\right ) \left (-\frac{\left (\sqrt{-a}+\sqrt{c} x\right ) \left (\sqrt{-a} e+\sqrt{c} d\right )}{\left (\sqrt{-a}-\sqrt{c} x\right ) \left (\sqrt{c} d-\sqrt{-a} e\right )}\right )^{-p} \, _2F_1\left (-2 p-1,-p;-2 p;\frac{2 \sqrt{-a} \sqrt{c} (d+e x)}{\left (\sqrt{c} d-\sqrt{-a} e\right ) \left (\sqrt{-a}-\sqrt{c} x\right )}\right )}{(2 p+1) (2 p+3) \left (\sqrt{-a} e+\sqrt{c} d\right ) \left (a e^2+c d^2\right )^3}+\frac{c e \left (a+c x^2\right )^{p+1} (d+e x)^{-2 (p+1)} \left (a e^2 (2 p+3)-c d^2 \left (2 p^2+8 p+9\right )\right )}{2 (p+1) (p+2) (2 p+3) \left (a e^2+c d^2\right )^3}-\frac{c d e (p+3) \left (a+c x^2\right )^{p+1} (d+e x)^{-2 p-3}}{(p+2) (2 p+3) \left (a e^2+c d^2\right )^2}-\frac{e \left (a+c x^2\right )^{p+1} (d+e x)^{-2 (p+2)}}{2 (p+2) \left (a e^2+c d^2\right )}$

[Out]

-((c*d*e*(3 + p)*(d + e*x)^(-3 - 2*p)*(a + c*x^2)^(1 + p))/((c*d^2 + a*e^2)^2*(2 + p)*(3 + 2*p))) + (c*e*(a*e^
2*(3 + 2*p) - c*d^2*(9 + 8*p + 2*p^2))*(a + c*x^2)^(1 + p))/(2*(c*d^2 + a*e^2)^3*(1 + p)*(2 + p)*(3 + 2*p)*(d
+ e*x)^(2*(1 + p))) - (e*(a + c*x^2)^(1 + p))/(2*(c*d^2 + a*e^2)*(2 + p)*(d + e*x)^(2*(2 + p))) + (c^2*d*(3*a*
e^2 - c*d^2*(3 + 2*p))*(Sqrt[-a] - Sqrt[c]*x)*(d + e*x)^(-1 - 2*p)*(a + c*x^2)^p*Hypergeometric2F1[-1 - 2*p, -
p, -2*p, (2*Sqrt[-a]*Sqrt[c]*(d + e*x))/((Sqrt[c]*d - Sqrt[-a]*e)*(Sqrt[-a] - Sqrt[c]*x))])/((Sqrt[c]*d + Sqrt
[-a]*e)*(c*d^2 + a*e^2)^3*(1 + 2*p)*(3 + 2*p)*(-(((Sqrt[c]*d + Sqrt[-a]*e)*(Sqrt[-a] + Sqrt[c]*x))/((Sqrt[c]*d
- Sqrt[-a]*e)*(Sqrt[-a] - Sqrt[c]*x))))^p)

________________________________________________________________________________________

Rubi [A]  time = 0.454356, antiderivative size = 436, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.19, Rules used = {745, 837, 807, 727} $\frac{c^2 d \left (\sqrt{-a}-\sqrt{c} x\right ) \left (a+c x^2\right )^p (d+e x)^{-2 p-1} \left (3 a e^2-c d^2 (2 p+3)\right ) \left (-\frac{\left (\sqrt{-a}+\sqrt{c} x\right ) \left (\sqrt{-a} e+\sqrt{c} d\right )}{\left (\sqrt{-a}-\sqrt{c} x\right ) \left (\sqrt{c} d-\sqrt{-a} e\right )}\right )^{-p} \, _2F_1\left (-2 p-1,-p;-2 p;\frac{2 \sqrt{-a} \sqrt{c} (d+e x)}{\left (\sqrt{c} d-\sqrt{-a} e\right ) \left (\sqrt{-a}-\sqrt{c} x\right )}\right )}{(2 p+1) (2 p+3) \left (\sqrt{-a} e+\sqrt{c} d\right ) \left (a e^2+c d^2\right )^3}+\frac{c e \left (a+c x^2\right )^{p+1} (d+e x)^{-2 (p+1)} \left (a e^2 (2 p+3)-c d^2 \left (2 p^2+8 p+9\right )\right )}{2 (p+1) (p+2) (2 p+3) \left (a e^2+c d^2\right )^3}-\frac{c d e (p+3) \left (a+c x^2\right )^{p+1} (d+e x)^{-2 p-3}}{(p+2) (2 p+3) \left (a e^2+c d^2\right )^2}-\frac{e \left (a+c x^2\right )^{p+1} (d+e x)^{-2 (p+2)}}{2 (p+2) \left (a e^2+c d^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^(-5 - 2*p)*(a + c*x^2)^p,x]

[Out]

-((c*d*e*(3 + p)*(d + e*x)^(-3 - 2*p)*(a + c*x^2)^(1 + p))/((c*d^2 + a*e^2)^2*(2 + p)*(3 + 2*p))) + (c*e*(a*e^
2*(3 + 2*p) - c*d^2*(9 + 8*p + 2*p^2))*(a + c*x^2)^(1 + p))/(2*(c*d^2 + a*e^2)^3*(1 + p)*(2 + p)*(3 + 2*p)*(d
+ e*x)^(2*(1 + p))) - (e*(a + c*x^2)^(1 + p))/(2*(c*d^2 + a*e^2)*(2 + p)*(d + e*x)^(2*(2 + p))) + (c^2*d*(3*a*
e^2 - c*d^2*(3 + 2*p))*(Sqrt[-a] - Sqrt[c]*x)*(d + e*x)^(-1 - 2*p)*(a + c*x^2)^p*Hypergeometric2F1[-1 - 2*p, -
p, -2*p, (2*Sqrt[-a]*Sqrt[c]*(d + e*x))/((Sqrt[c]*d - Sqrt[-a]*e)*(Sqrt[-a] - Sqrt[c]*x))])/((Sqrt[c]*d + Sqrt
[-a]*e)*(c*d^2 + a*e^2)^3*(1 + 2*p)*(3 + 2*p)*(-(((Sqrt[c]*d + Sqrt[-a]*e)*(Sqrt[-a] + Sqrt[c]*x))/((Sqrt[c]*d
- Sqrt[-a]*e)*(Sqrt[-a] - Sqrt[c]*x))))^p)

Rule 745

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m + 1)*(a + c*x^2)^(p
+ 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Dist[c/((m + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^(m + 1)*Simp[d*(m + 1)
- e*(m + 2*p + 3)*x, x]*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[
m, -1] && ((LtQ[m, -1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]) || (SumSimplerQ[m, 1] && IntegerQ[p]) || ILtQ
[Simplify[m + 2*p + 3], 0])

Rule 837

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((e*f - d*g)
*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Dist[1/((m + 1)*(c*d^2 + a*e^2)), Int[
(d + e*x)^(m + 1)*(a + c*x^2)^p*Simp[(c*d*f + a*e*g)*(m + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; Fr
eeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] && ILtQ[Simplify[m + 2*p + 3], 0] && NeQ[m, -1]

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 727

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((Rt[-(a*c), 2] - c*x)*(d + e*x)^(m
+ 1)*(a + c*x^2)^p*Hypergeometric2F1[m + 1, -p, m + 2, (2*c*Rt[-(a*c), 2]*(d + e*x))/((c*d - e*Rt[-(a*c), 2])
*(Rt[-(a*c), 2] - c*x))])/((m + 1)*(c*d + e*Rt[-(a*c), 2])*(((c*d + e*Rt[-(a*c), 2])*(Rt[-(a*c), 2] + c*x))/((
c*d - e*Rt[-(a*c), 2])*(-Rt[-(a*c), 2] + c*x)))^p), x] /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2, 0
] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0]

Rubi steps

\begin{align*} \int (d+e x)^{-5-2 p} \left (a+c x^2\right )^p \, dx &=-\frac{e (d+e x)^{-2 (2+p)} \left (a+c x^2\right )^{1+p}}{2 \left (c d^2+a e^2\right ) (2+p)}-\frac{c \int (d+e x)^{-4-2 p} (-2 d (2+p)+2 e x) \left (a+c x^2\right )^p \, dx}{2 \left (c d^2+a e^2\right ) (2+p)}\\ &=-\frac{c d e (3+p) (d+e x)^{-3-2 p} \left (a+c x^2\right )^{1+p}}{\left (c d^2+a e^2\right )^2 (2+p) (3+2 p)}-\frac{e (d+e x)^{-2 (2+p)} \left (a+c x^2\right )^{1+p}}{2 \left (c d^2+a e^2\right ) (2+p)}+\frac{c \int (d+e x)^{-3-2 p} \left (-2 (3+2 p) \left (a e^2-c d^2 (2+p)\right )-2 c d e (3+p) x\right ) \left (a+c x^2\right )^p \, dx}{2 \left (c d^2+a e^2\right )^2 (2+p) (3+2 p)}\\ &=-\frac{c d e (3+p) (d+e x)^{-3-2 p} \left (a+c x^2\right )^{1+p}}{\left (c d^2+a e^2\right )^2 (2+p) (3+2 p)}+\frac{c e \left (a e^2 (3+2 p)-c d^2 \left (9+8 p+2 p^2\right )\right ) (d+e x)^{-2 (1+p)} \left (a+c x^2\right )^{1+p}}{2 \left (c d^2+a e^2\right )^3 (1+p) (2+p) (3+2 p)}-\frac{e (d+e x)^{-2 (2+p)} \left (a+c x^2\right )^{1+p}}{2 \left (c d^2+a e^2\right ) (2+p)}-\frac{\left (c^2 d \left (3 a e^2-c d^2 (3+2 p)\right )\right ) \int (d+e x)^{-2-2 p} \left (a+c x^2\right )^p \, dx}{\left (c d^2+a e^2\right )^3 (3+2 p)}\\ &=-\frac{c d e (3+p) (d+e x)^{-3-2 p} \left (a+c x^2\right )^{1+p}}{\left (c d^2+a e^2\right )^2 (2+p) (3+2 p)}+\frac{c e \left (a e^2 (3+2 p)-c d^2 \left (9+8 p+2 p^2\right )\right ) (d+e x)^{-2 (1+p)} \left (a+c x^2\right )^{1+p}}{2 \left (c d^2+a e^2\right )^3 (1+p) (2+p) (3+2 p)}-\frac{e (d+e x)^{-2 (2+p)} \left (a+c x^2\right )^{1+p}}{2 \left (c d^2+a e^2\right ) (2+p)}+\frac{c^2 d \left (3 a e^2-c d^2 (3+2 p)\right ) \left (\sqrt{-a}-\sqrt{c} x\right ) \left (-\frac{\left (\sqrt{c} d+\sqrt{-a} e\right ) \left (\sqrt{-a}+\sqrt{c} x\right )}{\left (\sqrt{c} d-\sqrt{-a} e\right ) \left (\sqrt{-a}-\sqrt{c} x\right )}\right )^{-p} (d+e x)^{-1-2 p} \left (a+c x^2\right )^p \, _2F_1\left (-1-2 p,-p;-2 p;\frac{2 \sqrt{-a} \sqrt{c} (d+e x)}{\left (\sqrt{c} d-\sqrt{-a} e\right ) \left (\sqrt{-a}-\sqrt{c} x\right )}\right )}{\left (\sqrt{c} d+\sqrt{-a} e\right ) \left (c d^2+a e^2\right )^3 (1+2 p) (3+2 p)}\\ \end{align*}

Mathematica [B]  time = 98.1975, size = 2500, normalized size = 5.73 $\text{Result too large to show}$

Warning: Unable to verify antiderivative.

[In]

Integrate[(d + e*x)^(-5 - 2*p)*(a + c*x^2)^p,x]

[Out]

-((a + c*x^2)^p*(1 - (d + e*x)/(d + Sqrt[-(a/c)]*e))^(1 + p)*(6*(d + Sqrt[-(a/c)]*e)^4*p*(Sqrt[-(a/c)] + x)*Ga
mma[-p]*Gamma[-2*(1 + p)]*Hypergeometric2F1[1, -p, -3 - 2*p, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*
(Sqrt[-(a/c)] + x))] + 22*(d + Sqrt[-(a/c)]*e)^4*p^2*(Sqrt[-(a/c)] + x)*Gamma[-p]*Gamma[-2*(1 + p)]*Hypergeome
tric2F1[1, -p, -3 - 2*p, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 24*(d + Sqrt[
-(a/c)]*e)^4*p^3*(Sqrt[-(a/c)] + x)*Gamma[-p]*Gamma[-2*(1 + p)]*Hypergeometric2F1[1, -p, -3 - 2*p, (2*Sqrt[-(a
/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 8*(d + Sqrt[-(a/c)]*e)^4*p^4*(Sqrt[-(a/c)] + x)*G
amma[-p]*Gamma[-2*(1 + p)]*Hypergeometric2F1[1, -p, -3 - 2*p, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)
*(Sqrt[-(a/c)] + x))] + 6*(d + Sqrt[-(a/c)]*e)^2*p*(Sqrt[-(a/c)] + x)*(d + e*x)^2*Gamma[-p]*Gamma[-2*(1 + p)]*
Hypergeometric2F1[1, -p, -1 - 2*p, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 12*
(d + Sqrt[-(a/c)]*e)^2*p^2*(Sqrt[-(a/c)] + x)*(d + e*x)^2*Gamma[-p]*Gamma[-2*(1 + p)]*Hypergeometric2F1[1, -p,
-1 - 2*p, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 6*(d + Sqrt[-(a/c)]*e)*p*(S
qrt[-(a/c)] + x)*(d + e*x)^3*Gamma[-p]*Gamma[-2*(1 + p)]*Hypergeometric2F1[1, -p, -2*p, (2*Sqrt[-(a/c)]*(d + e
*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 6*(d + Sqrt[-(a/c)]*e)^3*p*(Sqrt[-(a/c)] + x)*(d + e*x)*Gamm
a[-p]*Gamma[-2*(1 + p)]*Hypergeometric2F1[1, -p, -2*(1 + p), (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*
(Sqrt[-(a/c)] + x))] + 18*(d + Sqrt[-(a/c)]*e)^3*p^2*(Sqrt[-(a/c)] + x)*(d + e*x)*Gamma[-p]*Gamma[-2*(1 + p)]*
Hypergeometric2F1[1, -p, -2*(1 + p), (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 1
2*(d + Sqrt[-(a/c)]*e)^3*p^3*(Sqrt[-(a/c)] + x)*(d + e*x)*Gamma[-p]*Gamma[-2*(1 + p)]*Hypergeometric2F1[1, -p,
-2*(1 + p), (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 18*Sqrt[-(a/c)]*(d + Sqrt
[-(a/c)]*e)^2*p*(d + e*x)^2*Gamma[-3 - 2*p]*Gamma[1 - p]*Hypergeometric2F1[2, 1 - p, -1 - 2*p, (2*Sqrt[-(a/c)]
*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 48*Sqrt[-(a/c)]*(d + Sqrt[-(a/c)]*e)^2*p^2*(d + e*x)^
2*Gamma[-3 - 2*p]*Gamma[1 - p]*Hypergeometric2F1[2, 1 - p, -1 - 2*p, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a
/c)]*e)*(Sqrt[-(a/c)] + x))] + 24*Sqrt[-(a/c)]*(d + Sqrt[-(a/c)]*e)^2*p^3*(d + e*x)^2*Gamma[-3 - 2*p]*Gamma[1
- p]*Hypergeometric2F1[2, 1 - p, -1 - 2*p, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x)
)] + 33*Sqrt[-(a/c)]*(d + e*x)^4*Gamma[-3 - 2*p]*Gamma[1 - p]*Hypergeometric2F1[2, 1 - p, 1 - 2*p, (2*Sqrt[-(a
/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 22*Sqrt[-(a/c)]*p*(d + e*x)^4*Gamma[-3 - 2*p]*Gam
ma[1 - p]*Hypergeometric2F1[2, 1 - p, 1 - 2*p, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)]
+ x))] + 54*Sqrt[-(a/c)]*(d + Sqrt[-(a/c)]*e)*p*(d + e*x)^3*Gamma[-3 - 2*p]*Gamma[1 - p]*Hypergeometric2F1[2,
1 - p, -2*p, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 36*Sqrt[-(a/c)]*(d + Sqrt
[-(a/c)]*e)*p^2*(d + e*x)^3*Gamma[-3 - 2*p]*Gamma[1 - p]*Hypergeometric2F1[2, 1 - p, -2*p, (2*Sqrt[-(a/c)]*(d
+ e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 18*Sqrt[-(a/c)]*(d + e*x)^4*Gamma[-3 - 2*p]*Gamma[1 - p]*
HypergeometricPFQ[{2, 2, 1 - p}, {1, 1 - 2*p}, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)]
+ x))] + 12*Sqrt[-(a/c)]*p*(d + e*x)^4*Gamma[-3 - 2*p]*Gamma[1 - p]*HypergeometricPFQ[{2, 2, 1 - p}, {1, 1 - 2
*p}, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 18*Sqrt[-(a/c)]*(d + Sqrt[-(a/c)]
*e)*p*(d + e*x)^3*Gamma[-3 - 2*p]*Gamma[1 - p]*HypergeometricPFQ[{2, 2, 1 - p}, {1, -2*p}, (2*Sqrt[-(a/c)]*(d
+ e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 12*Sqrt[-(a/c)]*(d + Sqrt[-(a/c)]*e)*p^2*(d + e*x)^3*Gamm
a[-3 - 2*p]*Gamma[1 - p]*HypergeometricPFQ[{2, 2, 1 - p}, {1, -2*p}, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a
/c)]*e)*(Sqrt[-(a/c)] + x))] + 3*Sqrt[-(a/c)]*(d + e*x)^4*Gamma[-3 - 2*p]*Gamma[1 - p]*HypergeometricPFQ[{2, 2
, 2, 1 - p}, {1, 1, 1 - 2*p}, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 2*Sqrt[-
(a/c)]*p*(d + e*x)^4*Gamma[-3 - 2*p]*Gamma[1 - p]*HypergeometricPFQ[{2, 2, 2, 1 - p}, {1, 1, 1 - 2*p}, (2*Sqrt
[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))]))/(4*e*(d + Sqrt[-(a/c)]*e)^4*p*(1 + p)*(2 + p)
*(1 + 2*p)*(3 + 2*p)*((e*(Sqrt[-(a/c)] - x))/(d + Sqrt[-(a/c)]*e))^p*(Sqrt[-(a/c)] + x)*(d + e*x)^(2*(2 + p))*
Gamma[-p]*Gamma[-2*(1 + p)])

________________________________________________________________________________________

Maple [F]  time = 0.597, size = 0, normalized size = 0. \begin{align*} \int \left ( ex+d \right ) ^{-5-2\,p} \left ( c{x}^{2}+a \right ) ^{p}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(-5-2*p)*(c*x^2+a)^p,x)

[Out]

int((e*x+d)^(-5-2*p)*(c*x^2+a)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (c x^{2} + a\right )}^{p}{\left (e x + d\right )}^{-2 \, p - 5}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(-5-2*p)*(c*x^2+a)^p,x, algorithm="maxima")

[Out]

integrate((c*x^2 + a)^p*(e*x + d)^(-2*p - 5), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (c x^{2} + a\right )}^{p}{\left (e x + d\right )}^{-2 \, p - 5}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(-5-2*p)*(c*x^2+a)^p,x, algorithm="fricas")

[Out]

integral((c*x^2 + a)^p*(e*x + d)^(-2*p - 5), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(-5-2*p)*(c*x**2+a)**p,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (c x^{2} + a\right )}^{p}{\left (e x + d\right )}^{-2 \, p - 5}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(-5-2*p)*(c*x^2+a)^p,x, algorithm="giac")

[Out]

integrate((c*x^2 + a)^p*(e*x + d)^(-2*p - 5), x)