### 3.701 $$\int \frac{(2+3 x)^2}{\sqrt [3]{4+27 x^2}} \, dx$$

Optimal. Leaf size=551 $-\frac{8\ 2^{5/6} \left (2^{2/3}-\sqrt [3]{27 x^2+4}\right ) \sqrt{\frac{\left (27 x^2+4\right )^{2/3}+2^{2/3} \sqrt [3]{27 x^2+4}+2 \sqrt [3]{2}}{\left (2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{27 x^2+4}\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{2^{2/3} \left (1+\sqrt{3}\right )-\sqrt [3]{27 x^2+4}}{2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{27 x^2+4}}\right ),4 \sqrt{3}-7\right )}{21 \sqrt [4]{3} \sqrt{-\frac{2^{2/3}-\sqrt [3]{27 x^2+4}}{\left (2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{27 x^2+4}\right )^2}} x}-\frac{72 x}{7 \left (2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{27 x^2+4}\right )}+\frac{1}{21} (3 x+2) \left (27 x^2+4\right )^{2/3}+\frac{5}{21} \left (27 x^2+4\right )^{2/3}+\frac{4 \sqrt [3]{2} \sqrt{2+\sqrt{3}} \left (2^{2/3}-\sqrt [3]{27 x^2+4}\right ) \sqrt{\frac{\left (27 x^2+4\right )^{2/3}+2^{2/3} \sqrt [3]{27 x^2+4}+2 \sqrt [3]{2}}{\left (2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{27 x^2+4}\right )^2}} E\left (\sin ^{-1}\left (\frac{2^{2/3} \left (1+\sqrt{3}\right )-\sqrt [3]{27 x^2+4}}{2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{27 x^2+4}}\right )|-7+4 \sqrt{3}\right )}{7\ 3^{3/4} \sqrt{-\frac{2^{2/3}-\sqrt [3]{27 x^2+4}}{\left (2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{27 x^2+4}\right )^2}} x}$

[Out]

(5*(4 + 27*x^2)^(2/3))/21 + ((2 + 3*x)*(4 + 27*x^2)^(2/3))/21 - (72*x)/(7*(2^(2/3)*(1 - Sqrt[3]) - (4 + 27*x^2
)^(1/3))) + (4*2^(1/3)*Sqrt[2 + Sqrt[3]]*(2^(2/3) - (4 + 27*x^2)^(1/3))*Sqrt[(2*2^(1/3) + 2^(2/3)*(4 + 27*x^2)
^(1/3) + (4 + 27*x^2)^(2/3))/(2^(2/3)*(1 - Sqrt[3]) - (4 + 27*x^2)^(1/3))^2]*EllipticE[ArcSin[(2^(2/3)*(1 + Sq
rt[3]) - (4 + 27*x^2)^(1/3))/(2^(2/3)*(1 - Sqrt[3]) - (4 + 27*x^2)^(1/3))], -7 + 4*Sqrt[3]])/(7*3^(3/4)*x*Sqrt
[-((2^(2/3) - (4 + 27*x^2)^(1/3))/(2^(2/3)*(1 - Sqrt[3]) - (4 + 27*x^2)^(1/3))^2)]) - (8*2^(5/6)*(2^(2/3) - (4
+ 27*x^2)^(1/3))*Sqrt[(2*2^(1/3) + 2^(2/3)*(4 + 27*x^2)^(1/3) + (4 + 27*x^2)^(2/3))/(2^(2/3)*(1 - Sqrt[3]) -
(4 + 27*x^2)^(1/3))^2]*EllipticF[ArcSin[(2^(2/3)*(1 + Sqrt[3]) - (4 + 27*x^2)^(1/3))/(2^(2/3)*(1 - Sqrt[3]) -
(4 + 27*x^2)^(1/3))], -7 + 4*Sqrt[3]])/(21*3^(1/4)*x*Sqrt[-((2^(2/3) - (4 + 27*x^2)^(1/3))/(2^(2/3)*(1 - Sqrt[
3]) - (4 + 27*x^2)^(1/3))^2)])

________________________________________________________________________________________

Rubi [A]  time = 0.312908, antiderivative size = 551, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 19, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.316, Rules used = {743, 641, 235, 304, 219, 1879} $-\frac{72 x}{7 \left (2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{27 x^2+4}\right )}+\frac{1}{21} (3 x+2) \left (27 x^2+4\right )^{2/3}+\frac{5}{21} \left (27 x^2+4\right )^{2/3}-\frac{8\ 2^{5/6} \left (2^{2/3}-\sqrt [3]{27 x^2+4}\right ) \sqrt{\frac{\left (27 x^2+4\right )^{2/3}+2^{2/3} \sqrt [3]{27 x^2+4}+2 \sqrt [3]{2}}{\left (2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{27 x^2+4}\right )^2}} F\left (\sin ^{-1}\left (\frac{2^{2/3} \left (1+\sqrt{3}\right )-\sqrt [3]{27 x^2+4}}{2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{27 x^2+4}}\right )|-7+4 \sqrt{3}\right )}{21 \sqrt [4]{3} \sqrt{-\frac{2^{2/3}-\sqrt [3]{27 x^2+4}}{\left (2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{27 x^2+4}\right )^2}} x}+\frac{4 \sqrt [3]{2} \sqrt{2+\sqrt{3}} \left (2^{2/3}-\sqrt [3]{27 x^2+4}\right ) \sqrt{\frac{\left (27 x^2+4\right )^{2/3}+2^{2/3} \sqrt [3]{27 x^2+4}+2 \sqrt [3]{2}}{\left (2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{27 x^2+4}\right )^2}} E\left (\sin ^{-1}\left (\frac{2^{2/3} \left (1+\sqrt{3}\right )-\sqrt [3]{27 x^2+4}}{2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{27 x^2+4}}\right )|-7+4 \sqrt{3}\right )}{7\ 3^{3/4} \sqrt{-\frac{2^{2/3}-\sqrt [3]{27 x^2+4}}{\left (2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{27 x^2+4}\right )^2}} x}$

Antiderivative was successfully veriﬁed.

[In]

Int[(2 + 3*x)^2/(4 + 27*x^2)^(1/3),x]

[Out]

(5*(4 + 27*x^2)^(2/3))/21 + ((2 + 3*x)*(4 + 27*x^2)^(2/3))/21 - (72*x)/(7*(2^(2/3)*(1 - Sqrt[3]) - (4 + 27*x^2
)^(1/3))) + (4*2^(1/3)*Sqrt[2 + Sqrt[3]]*(2^(2/3) - (4 + 27*x^2)^(1/3))*Sqrt[(2*2^(1/3) + 2^(2/3)*(4 + 27*x^2)
^(1/3) + (4 + 27*x^2)^(2/3))/(2^(2/3)*(1 - Sqrt[3]) - (4 + 27*x^2)^(1/3))^2]*EllipticE[ArcSin[(2^(2/3)*(1 + Sq
rt[3]) - (4 + 27*x^2)^(1/3))/(2^(2/3)*(1 - Sqrt[3]) - (4 + 27*x^2)^(1/3))], -7 + 4*Sqrt[3]])/(7*3^(3/4)*x*Sqrt
[-((2^(2/3) - (4 + 27*x^2)^(1/3))/(2^(2/3)*(1 - Sqrt[3]) - (4 + 27*x^2)^(1/3))^2)]) - (8*2^(5/6)*(2^(2/3) - (4
+ 27*x^2)^(1/3))*Sqrt[(2*2^(1/3) + 2^(2/3)*(4 + 27*x^2)^(1/3) + (4 + 27*x^2)^(2/3))/(2^(2/3)*(1 - Sqrt[3]) -
(4 + 27*x^2)^(1/3))^2]*EllipticF[ArcSin[(2^(2/3)*(1 + Sqrt[3]) - (4 + 27*x^2)^(1/3))/(2^(2/3)*(1 - Sqrt[3]) -
(4 + 27*x^2)^(1/3))], -7 + 4*Sqrt[3]])/(21*3^(1/4)*x*Sqrt[-((2^(2/3) - (4 + 27*x^2)^(1/3))/(2^(2/3)*(1 - Sqrt[
3]) - (4 + 27*x^2)^(1/3))^2)])

Rule 743

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)*(a + c*x^2)^(p
+ 1))/(c*(m + 2*p + 1)), x] + Dist[1/(c*(m + 2*p + 1)), Int[(d + e*x)^(m - 2)*Simp[c*d^2*(m + 2*p + 1) - a*e^
2*(m - 1) + 2*c*d*e*(m + p)*x, x]*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2,
0] && If[RationalQ[m], GtQ[m, 1], SumSimplerQ[m, -2]] && NeQ[m + 2*p + 1, 0] && IntQuadraticQ[a, 0, c, d, e, m
, p, x]

Rule 641

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*(a + c*x^2)^(p + 1))/(2*c*(p + 1)),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 235

Int[((a_) + (b_.)*(x_)^2)^(-1/3), x_Symbol] :> Dist[(3*Sqrt[b*x^2])/(2*b*x), Subst[Int[x/Sqrt[-a + x^3], x], x
, (a + b*x^2)^(1/3)], x] /; FreeQ[{a, b}, x]

Rule 304

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, -Dist[(S
qrt[2]*s)/(Sqrt[2 - Sqrt[3]]*r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 + Sqrt[3])*s + r*x)/Sqrt[a
+ b*x^3], x], x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 219

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 - Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 + Sqrt[3
])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[-((s*(s + r*x))/((1 - S
qrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 1879

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 + Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 + Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 - Sqrt[3])*s + r*x)), x
] + Simp[(3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[-((s
*(s + r*x))/((1 - Sqrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && EqQ[b*c^3 - 2*(5 + 3*Sqr
t[3])*a*d^3, 0]

Rubi steps

\begin{align*} \int \frac{(2+3 x)^2}{\sqrt [3]{4+27 x^2}} \, dx &=\frac{1}{21} (2+3 x) \left (4+27 x^2\right )^{2/3}+\frac{1}{63} \int \frac{216+540 x}{\sqrt [3]{4+27 x^2}} \, dx\\ &=\frac{5}{21} \left (4+27 x^2\right )^{2/3}+\frac{1}{21} (2+3 x) \left (4+27 x^2\right )^{2/3}+\frac{24}{7} \int \frac{1}{\sqrt [3]{4+27 x^2}} \, dx\\ &=\frac{5}{21} \left (4+27 x^2\right )^{2/3}+\frac{1}{21} (2+3 x) \left (4+27 x^2\right )^{2/3}+\frac{\left (4 \sqrt{3} \sqrt{x^2}\right ) \operatorname{Subst}\left (\int \frac{x}{\sqrt{-4+x^3}} \, dx,x,\sqrt [3]{4+27 x^2}\right )}{7 x}\\ &=\frac{5}{21} \left (4+27 x^2\right )^{2/3}+\frac{1}{21} (2+3 x) \left (4+27 x^2\right )^{2/3}-\frac{\left (4 \sqrt{3} \sqrt{x^2}\right ) \operatorname{Subst}\left (\int \frac{2^{2/3} \left (1+\sqrt{3}\right )-x}{\sqrt{-4+x^3}} \, dx,x,\sqrt [3]{4+27 x^2}\right )}{7 x}+\frac{\left (8 \sqrt [6]{2} \sqrt{3} \sqrt{x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-4+x^3}} \, dx,x,\sqrt [3]{4+27 x^2}\right )}{7 \sqrt{2-\sqrt{3}} x}\\ &=\frac{5}{21} \left (4+27 x^2\right )^{2/3}+\frac{1}{21} (2+3 x) \left (4+27 x^2\right )^{2/3}-\frac{72 x}{7 \left (2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{4+27 x^2}\right )}+\frac{4 \sqrt [3]{2} \sqrt{2+\sqrt{3}} \left (2^{2/3}-\sqrt [3]{4+27 x^2}\right ) \sqrt{\frac{2 \sqrt [3]{2}+2^{2/3} \sqrt [3]{4+27 x^2}+\left (4+27 x^2\right )^{2/3}}{\left (2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{4+27 x^2}\right )^2}} E\left (\sin ^{-1}\left (\frac{2^{2/3} \left (1+\sqrt{3}\right )-\sqrt [3]{4+27 x^2}}{2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{4+27 x^2}}\right )|-7+4 \sqrt{3}\right )}{7\ 3^{3/4} x \sqrt{-\frac{2^{2/3}-\sqrt [3]{4+27 x^2}}{\left (2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{4+27 x^2}\right )^2}}}-\frac{8\ 2^{5/6} \left (2^{2/3}-\sqrt [3]{4+27 x^2}\right ) \sqrt{\frac{2 \sqrt [3]{2}+2^{2/3} \sqrt [3]{4+27 x^2}+\left (4+27 x^2\right )^{2/3}}{\left (2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{4+27 x^2}\right )^2}} F\left (\sin ^{-1}\left (\frac{2^{2/3} \left (1+\sqrt{3}\right )-\sqrt [3]{4+27 x^2}}{2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{4+27 x^2}}\right )|-7+4 \sqrt{3}\right )}{21 \sqrt [4]{3} x \sqrt{-\frac{2^{2/3}-\sqrt [3]{4+27 x^2}}{\left (2^{2/3} \left (1-\sqrt{3}\right )-\sqrt [3]{4+27 x^2}\right )^2}}}\\ \end{align*}

Mathematica [C]  time = 0.0251864, size = 47, normalized size = 0.09 $\frac{1}{21} \left (36 \sqrt [3]{2} x \, _2F_1\left (\frac{1}{3},\frac{1}{2};\frac{3}{2};-\frac{27 x^2}{4}\right )+\left (27 x^2+4\right )^{2/3} (3 x+7)\right )$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(2 + 3*x)^2/(4 + 27*x^2)^(1/3),x]

[Out]

((7 + 3*x)*(4 + 27*x^2)^(2/3) + 36*2^(1/3)*x*Hypergeometric2F1[1/3, 1/2, 3/2, (-27*x^2)/4])/21

________________________________________________________________________________________

Maple [C]  time = 0.218, size = 35, normalized size = 0.1 \begin{align*}{\frac{7+3\,x}{21} \left ( 27\,{x}^{2}+4 \right ) ^{{\frac{2}{3}}}}+{\frac{12\,\sqrt [3]{2}x}{7}{\mbox{$_2$F$_1$}({\frac{1}{3}},{\frac{1}{2}};\,{\frac{3}{2}};\,-{\frac{27\,{x}^{2}}{4}})}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((2+3*x)^2/(27*x^2+4)^(1/3),x)

[Out]

1/21*(7+3*x)*(27*x^2+4)^(2/3)+12/7*2^(1/3)*x*hypergeom([1/3,1/2],[3/2],-27/4*x^2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (3 \, x + 2\right )}^{2}}{{\left (27 \, x^{2} + 4\right )}^{\frac{1}{3}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^2/(27*x^2+4)^(1/3),x, algorithm="maxima")

[Out]

integrate((3*x + 2)^2/(27*x^2 + 4)^(1/3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{9 \, x^{2} + 12 \, x + 4}{{\left (27 \, x^{2} + 4\right )}^{\frac{1}{3}}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^2/(27*x^2+4)^(1/3),x, algorithm="fricas")

[Out]

integral((9*x^2 + 12*x + 4)/(27*x^2 + 4)^(1/3), x)

________________________________________________________________________________________

Sympy [A]  time = 3.433, size = 68, normalized size = 0.12 \begin{align*} \frac{3 \sqrt [3]{2} x^{3}{{}_{2}F_{1}\left (\begin{matrix} \frac{1}{3}, \frac{3}{2} \\ \frac{5}{2} \end{matrix}\middle |{\frac{27 x^{2} e^{i \pi }}{4}} \right )}}{2} + 2 \sqrt [3]{2} x{{}_{2}F_{1}\left (\begin{matrix} \frac{1}{3}, \frac{1}{2} \\ \frac{3}{2} \end{matrix}\middle |{\frac{27 x^{2} e^{i \pi }}{4}} \right )} + \frac{\left (27 x^{2} + 4\right )^{\frac{2}{3}}}{3} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**2/(27*x**2+4)**(1/3),x)

[Out]

3*2**(1/3)*x**3*hyper((1/3, 3/2), (5/2,), 27*x**2*exp_polar(I*pi)/4)/2 + 2*2**(1/3)*x*hyper((1/3, 1/2), (3/2,)
, 27*x**2*exp_polar(I*pi)/4) + (27*x**2 + 4)**(2/3)/3

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (3 \, x + 2\right )}^{2}}{{\left (27 \, x^{2} + 4\right )}^{\frac{1}{3}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^2/(27*x^2+4)^(1/3),x, algorithm="giac")

[Out]

integrate((3*x + 2)^2/(27*x^2 + 4)^(1/3), x)