### 3.693 $$\int \frac{(d+e x)^{7/2}}{(a+c x^2)^{5/2}} \, dx$$

Optimal. Leaf size=418 $-\frac{\sqrt{\frac{c x^2}{a}+1} \left (a e^2+c d^2\right ) \left (5 a e^2+4 c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right ),-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{6 (-a)^{3/2} c^{5/2} \sqrt{a+c x^2} \sqrt{d+e x}}-\frac{\sqrt{d+e x} \left (a e \left (5 a e^2+3 c d^2\right )-2 c d x \left (3 a e^2+2 c d^2\right )\right )}{6 a^2 c^2 \sqrt{a+c x^2}}+\frac{2 d \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} \left (2 a e^2+c d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 (-a)^{3/2} c^{3/2} \sqrt{a+c x^2} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}-\frac{(d+e x)^{5/2} (a e-c d x)}{3 a c \left (a+c x^2\right )^{3/2}}$

[Out]

-((a*e - c*d*x)*(d + e*x)^(5/2))/(3*a*c*(a + c*x^2)^(3/2)) - (Sqrt[d + e*x]*(a*e*(3*c*d^2 + 5*a*e^2) - 2*c*d*(
2*c*d^2 + 3*a*e^2)*x))/(6*a^2*c^2*Sqrt[a + c*x^2]) + (2*d*(c*d^2 + 2*a*e^2)*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*
EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(3*(-a)^(3/2)*
c^(3/2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2]) - ((c*d^2 + a*e^2)*(4*c*d^2 + 5*a*
e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]
*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(6*(-a)^(3/2)*c^(5/2)*Sqrt[d + e*x]*Sqrt[a + c*x
^2])

________________________________________________________________________________________

Rubi [A]  time = 0.379881, antiderivative size = 418, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 21, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.286, Rules used = {739, 819, 844, 719, 424, 419} $-\frac{\sqrt{d+e x} \left (a e \left (5 a e^2+3 c d^2\right )-2 c d x \left (3 a e^2+2 c d^2\right )\right )}{6 a^2 c^2 \sqrt{a+c x^2}}-\frac{\sqrt{\frac{c x^2}{a}+1} \left (a e^2+c d^2\right ) \left (5 a e^2+4 c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{6 (-a)^{3/2} c^{5/2} \sqrt{a+c x^2} \sqrt{d+e x}}+\frac{2 d \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} \left (2 a e^2+c d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 (-a)^{3/2} c^{3/2} \sqrt{a+c x^2} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}-\frac{(d+e x)^{5/2} (a e-c d x)}{3 a c \left (a+c x^2\right )^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^(7/2)/(a + c*x^2)^(5/2),x]

[Out]

-((a*e - c*d*x)*(d + e*x)^(5/2))/(3*a*c*(a + c*x^2)^(3/2)) - (Sqrt[d + e*x]*(a*e*(3*c*d^2 + 5*a*e^2) - 2*c*d*(
2*c*d^2 + 3*a*e^2)*x))/(6*a^2*c^2*Sqrt[a + c*x^2]) + (2*d*(c*d^2 + 2*a*e^2)*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*
EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(3*(-a)^(3/2)*
c^(3/2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2]) - ((c*d^2 + a*e^2)*(4*c*d^2 + 5*a*
e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]
*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(6*(-a)^(3/2)*c^(5/2)*Sqrt[d + e*x]*Sqrt[a + c*x
^2])

Rule 739

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(a*e - c*d*x)*(a
+ c*x^2)^(p + 1))/(2*a*c*(p + 1)), x] + Dist[1/((p + 1)*(-2*a*c)), Int[(d + e*x)^(m - 2)*Simp[a*e^2*(m - 1) -
c*d^2*(2*p + 3) - d*c*e*(m + 2*p + 2)*x, x]*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^
2 + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 819

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x)^(
m - 1)*(a + c*x^2)^(p + 1)*(a*(e*f + d*g) - (c*d*f - a*e*g)*x))/(2*a*c*(p + 1)), x] - Dist[1/(2*a*c*(p + 1)),
Int[(d + e*x)^(m - 2)*(a + c*x^2)^(p + 1)*Simp[a*e*(e*f*(m - 1) + d*g*m) - c*d^2*f*(2*p + 3) + e*(a*e*g*m - c*
d*f*(m + 2*p + 2))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && GtQ
[m, 1] && (EqQ[d, 0] || (EqQ[m, 2] && EqQ[p, -3] && RationalQ[a, c, d, e, f, g]) ||  !ILtQ[m + 2*p + 3, 0])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{(d+e x)^{7/2}}{\left (a+c x^2\right )^{5/2}} \, dx &=-\frac{(a e-c d x) (d+e x)^{5/2}}{3 a c \left (a+c x^2\right )^{3/2}}+\frac{\int \frac{(d+e x)^{3/2} \left (\frac{1}{2} \left (4 c d^2+5 a e^2\right )-\frac{1}{2} c d e x\right )}{\left (a+c x^2\right )^{3/2}} \, dx}{3 a c}\\ &=-\frac{(a e-c d x) (d+e x)^{5/2}}{3 a c \left (a+c x^2\right )^{3/2}}-\frac{\sqrt{d+e x} \left (a e \left (3 c d^2+5 a e^2\right )-2 c d \left (2 c d^2+3 a e^2\right ) x\right )}{6 a^2 c^2 \sqrt{a+c x^2}}+\frac{\int \frac{\frac{1}{4} a e^2 \left (c d^2+5 a e^2\right )-c d e \left (c d^2+2 a e^2\right ) x}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{3 a^2 c^2}\\ &=-\frac{(a e-c d x) (d+e x)^{5/2}}{3 a c \left (a+c x^2\right )^{3/2}}-\frac{\sqrt{d+e x} \left (a e \left (3 c d^2+5 a e^2\right )-2 c d \left (2 c d^2+3 a e^2\right ) x\right )}{6 a^2 c^2 \sqrt{a+c x^2}}-\frac{\left (d \left (c d^2+2 a e^2\right )\right ) \int \frac{\sqrt{d+e x}}{\sqrt{a+c x^2}} \, dx}{3 a^2 c}+\frac{\left (\left (c d^2+a e^2\right ) \left (4 c d^2+5 a e^2\right )\right ) \int \frac{1}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{12 a^2 c^2}\\ &=-\frac{(a e-c d x) (d+e x)^{5/2}}{3 a c \left (a+c x^2\right )^{3/2}}-\frac{\sqrt{d+e x} \left (a e \left (3 c d^2+5 a e^2\right )-2 c d \left (2 c d^2+3 a e^2\right ) x\right )}{6 a^2 c^2 \sqrt{a+c x^2}}-\frac{\left (2 d \left (c d^2+2 a e^2\right ) \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{3 \sqrt{-a} a c^{3/2} \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{a+c x^2}}+\frac{\left (\left (c d^2+a e^2\right ) \left (4 c d^2+5 a e^2\right ) \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{6 \sqrt{-a} a c^{5/2} \sqrt{d+e x} \sqrt{a+c x^2}}\\ &=-\frac{(a e-c d x) (d+e x)^{5/2}}{3 a c \left (a+c x^2\right )^{3/2}}-\frac{\sqrt{d+e x} \left (a e \left (3 c d^2+5 a e^2\right )-2 c d \left (2 c d^2+3 a e^2\right ) x\right )}{6 a^2 c^2 \sqrt{a+c x^2}}+\frac{2 d \left (c d^2+2 a e^2\right ) \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 (-a)^{3/2} c^{3/2} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{a+c x^2}}-\frac{\left (c d^2+a e^2\right ) \left (4 c d^2+5 a e^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{1+\frac{c x^2}{a}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{6 (-a)^{3/2} c^{5/2} \sqrt{d+e x} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 3.67683, size = 627, normalized size = 1.5 $\frac{\sqrt{d+e x} \left (\frac{a^2 c e \left (-5 d^2+2 d e x-7 e^2 x^2\right )-5 a^3 e^3+a c^2 d x \left (6 d^2+d e x+8 e^2 x^2\right )+4 c^3 d^3 x^3}{a^2 c^2 \left (a+c x^2\right )}-\frac{-\sqrt{a} e (d+e x)^{3/2} \left (5 i a^{3/2} e^3+i \sqrt{a} c d^2 e+8 a \sqrt{c} d e^2+4 c^{3/2} d^3\right ) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right ),\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )+4 d e^2 \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}} \left (2 a^2 e^2+a c \left (d^2+2 e^2 x^2\right )+c^2 d^2 x^2\right )+4 \sqrt{c} d (d+e x)^{3/2} \left (2 a^{3/2} e^3+\sqrt{a} c d^2 e-2 i a \sqrt{c} d e^2-i c^{3/2} d^3\right ) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right )|\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )}{a^2 c^2 e (d+e x) \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}\right )}{6 \sqrt{a+c x^2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^(7/2)/(a + c*x^2)^(5/2),x]

[Out]

(Sqrt[d + e*x]*((-5*a^3*e^3 + 4*c^3*d^3*x^3 + a^2*c*e*(-5*d^2 + 2*d*e*x - 7*e^2*x^2) + a*c^2*d*x*(6*d^2 + d*e*
x + 8*e^2*x^2))/(a^2*c^2*(a + c*x^2)) - (4*d*e^2*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*(2*a^2*e^2 + c^2*d^2*x^2 + a
*c*(d^2 + 2*e^2*x^2)) + 4*Sqrt[c]*d*((-I)*c^(3/2)*d^3 + Sqrt[a]*c*d^2*e - (2*I)*a*Sqrt[c]*d*e^2 + 2*a^(3/2)*e^
3)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3
/2)*EllipticE[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d
+ I*Sqrt[a]*e)] - Sqrt[a]*e*(4*c^(3/2)*d^3 + I*Sqrt[a]*c*d^2*e + 8*a*Sqrt[c]*d*e^2 + (5*I)*a^(3/2)*e^3)*Sqrt[(
e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*Ellip
ticF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[
a]*e)])/(a^2*c^2*e*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*(d + e*x))))/(6*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.3, size = 2660, normalized size = 6.4 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(7/2)/(c*x^2+a)^(5/2),x)

[Out]

-1/6*(3*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*
a^3*c*d*e^4*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(
-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-9*x^3*a*c^3*d^2*e^3+3*x*a^2*c^2*d^2*e^3-6*x*a*c^3*d^4*e-7*x^2*a*c^3
*d^3*e^2+5*x^2*a^2*c^2*d*e^4-8*x^4*a*c^3*d*e^4+9*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(
1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x^2*a*c^2*d^2*e^3*(-a*c)^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2
)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-12*Elli
pticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a^2*c^2*d^3*
e^2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1
/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-4*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/
((-a*c)^(1/2)*e+c*d))^(1/2))*x^2*c^4*d^5*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c
)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+5*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*
e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a^3*e^5*(-a*c)^(1/2)*(-(e*x+d)*c/((-a*c)^(1/
2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d)
)^(1/2)-4*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2)
)*a*c^3*d^5*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(
-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-4*x^4*c^4*d^3*e^2+7*x^3*a^2*c^2*e^5-4*x^3*c^4*d^4*e+5*x*a^3*c*e^5+5
*a^3*c*d*e^4+5*a^2*c^2*d^3*e^2+4*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a
*c)^(1/2)*e+c*d))^(1/2))*x^2*c^3*d^4*e*(-a*c)^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2
))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-8*EllipticE((-(e*x+d)*c/((-
a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x^2*a^2*c^2*d*e^4*(-(e*x+d)*c/((-
a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2
)*e-c*d))^(1/2)-12*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*
d))^(1/2))*x^2*a*c^3*d^3*e^2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*
d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+9*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2
),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a^2*c*d^2*e^3*(-a*c)^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c
*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2
)+4*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*c^
2*d^4*e*(-a*c)^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2
)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+3*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a
*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x^2*a^2*c^2*d*e^4*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x
+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+5*EllipticF((-(
e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x^2*a^2*c*e^5*(-a*c)^
(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^
(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+3*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d
)/((-a*c)^(1/2)*e+c*d))^(1/2))*x^2*a*c^3*d^3*e^2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*
e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+3*EllipticF((-(e*x+d)*c/((-a*c
)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a^2*c^2*d^3*e^2*(-(e*x+d)*c/((-a*c)^
(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c
*d))^(1/2)-8*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1
/2))*a^3*c*d*e^4*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((
c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2))/(e*x+d)^(1/2)/a^2/e/c^3/(c*x^2+a)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{7}{2}}}{{\left (c x^{2} + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(7/2)/(c*x^2+a)^(5/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(7/2)/(c*x^2 + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (e^{3} x^{3} + 3 \, d e^{2} x^{2} + 3 \, d^{2} e x + d^{3}\right )} \sqrt{c x^{2} + a} \sqrt{e x + d}}{c^{3} x^{6} + 3 \, a c^{2} x^{4} + 3 \, a^{2} c x^{2} + a^{3}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(7/2)/(c*x^2+a)^(5/2),x, algorithm="fricas")

[Out]

integral((e^3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x + d^3)*sqrt(c*x^2 + a)*sqrt(e*x + d)/(c^3*x^6 + 3*a*c^2*x^4 + 3*a^
2*c*x^2 + a^3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(7/2)/(c*x**2+a)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{7}{2}}}{{\left (c x^{2} + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(7/2)/(c*x^2+a)^(5/2),x, algorithm="giac")

[Out]

integrate((e*x + d)^(7/2)/(c*x^2 + a)^(5/2), x)