### 3.689 $$\int \frac{1}{\sqrt{d+e x} (a+c x^2)^{3/2}} \, dx$$

Optimal. Leaf size=331 $\frac{\sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right ),-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{-a} \sqrt{c} \sqrt{a+c x^2} \sqrt{d+e x}}+\frac{\sqrt{d+e x} (a e+c d x)}{a \sqrt{a+c x^2} \left (a e^2+c d^2\right )}-\frac{\sqrt{c} d \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{-a} \sqrt{a+c x^2} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}$

[Out]

((a*e + c*d*x)*Sqrt[d + e*x])/(a*(c*d^2 + a*e^2)*Sqrt[a + c*x^2]) - (Sqrt[c]*d*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/
a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[-a]*(
c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2]) + (Sqrt[(Sqrt[c]*(d + e*x))
/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a
*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[-a]*Sqrt[c]*Sqrt[d + e*x]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.21975, antiderivative size = 331, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 21, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.238, Rules used = {741, 844, 719, 424, 419} $\frac{\sqrt{d+e x} (a e+c d x)}{a \sqrt{a+c x^2} \left (a e^2+c d^2\right )}-\frac{\sqrt{c} d \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{-a} \sqrt{a+c x^2} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}+\frac{\sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{-a} \sqrt{c} \sqrt{a+c x^2} \sqrt{d+e x}}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/(Sqrt[d + e*x]*(a + c*x^2)^(3/2)),x]

[Out]

((a*e + c*d*x)*Sqrt[d + e*x])/(a*(c*d^2 + a*e^2)*Sqrt[a + c*x^2]) - (Sqrt[c]*d*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/
a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[-a]*(
c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2]) + (Sqrt[(Sqrt[c]*(d + e*x))
/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a
*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[-a]*Sqrt[c]*Sqrt[d + e*x]*Sqrt[a + c*x^2])

Rule 741

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(m + 1)*(a*e + c*d*x)*(
a + c*x^2)^(p + 1))/(2*a*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[1/(2*a*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^m*
Simp[c*d^2*(2*p + 3) + a*e^2*(m + 2*p + 3) + c*e*d*(m + 2*p + 4)*x, x]*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a
, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{d+e x} \left (a+c x^2\right )^{3/2}} \, dx &=\frac{(a e+c d x) \sqrt{d+e x}}{a \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}-\frac{\int \frac{-\frac{a e^2}{2}+\frac{1}{2} c d e x}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{a \left (c d^2+a e^2\right )}\\ &=\frac{(a e+c d x) \sqrt{d+e x}}{a \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}+\frac{\int \frac{1}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{2 a}-\frac{(c d) \int \frac{\sqrt{d+e x}}{\sqrt{a+c x^2}} \, dx}{2 a \left (c d^2+a e^2\right )}\\ &=\frac{(a e+c d x) \sqrt{d+e x}}{a \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}-\frac{\left (\sqrt{c} d \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{\sqrt{-a} \left (c d^2+a e^2\right ) \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{a+c x^2}}+\frac{\left (\sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{\sqrt{-a} \sqrt{c} \sqrt{d+e x} \sqrt{a+c x^2}}\\ &=\frac{(a e+c d x) \sqrt{d+e x}}{a \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}-\frac{\sqrt{c} d \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{-a} \left (c d^2+a e^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{a+c x^2}}+\frac{\sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{1+\frac{c x^2}{a}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{-a} \sqrt{c} \sqrt{d+e x} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.974426, size = 430, normalized size = 1.3 $\frac{\sqrt{a} e (d+e x)^{3/2} \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right ),\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )+e x \left (\sqrt{c} d-i \sqrt{a} e\right ) \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}+i \sqrt{c} d (d+e x)^{3/2} \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right )|\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )}{a e \sqrt{a+c x^2} \sqrt{d+e x} \left (\sqrt{c} d-i \sqrt{a} e\right ) \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/(Sqrt[d + e*x]*(a + c*x^2)^(3/2)),x]

[Out]

(e*(Sqrt[c]*d - I*Sqrt[a]*e)*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*x + I*Sqrt[c]*d*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x
))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*EllipticE[I*ArcSinh[Sqrt[-d - (
I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)] + Sqrt[a]*e*Sqrt[(e
*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*Ellipt
icF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a
]*e)])/(a*e*(Sqrt[c]*d - I*Sqrt[a]*e)*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*Sqrt[d + e*x]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.279, size = 696, normalized size = 2.1 \begin{align*}{\frac{1}{ \left ( a{e}^{2}+c{d}^{2} \right ) ace \left ( ce{x}^{3}+cd{x}^{2}+aex+ad \right ) } \left ( -\sqrt{-{c \left ( ex+d \right ) \left ( \sqrt{-ac}e-cd \right ) ^{-1}}}\sqrt{{e \left ( -cx+\sqrt{-ac} \right ) \left ( \sqrt{-ac}e+cd \right ) ^{-1}}}\sqrt{{e \left ( cx+\sqrt{-ac} \right ) \left ( \sqrt{-ac}e-cd \right ) ^{-1}}}{\it EllipticF} \left ( \sqrt{-{c \left ( ex+d \right ) \left ( \sqrt{-ac}e-cd \right ) ^{-1}}},\sqrt{-{ \left ( \sqrt{-ac}e-cd \right ) \left ( \sqrt{-ac}e+cd \right ) ^{-1}}} \right ) \sqrt{-ac}a{e}^{3}-\sqrt{-{c \left ( ex+d \right ) \left ( \sqrt{-ac}e-cd \right ) ^{-1}}}\sqrt{{e \left ( -cx+\sqrt{-ac} \right ) \left ( \sqrt{-ac}e+cd \right ) ^{-1}}}\sqrt{{e \left ( cx+\sqrt{-ac} \right ) \left ( \sqrt{-ac}e-cd \right ) ^{-1}}}{\it EllipticF} \left ( \sqrt{-{c \left ( ex+d \right ) \left ( \sqrt{-ac}e-cd \right ) ^{-1}}},\sqrt{-{ \left ( \sqrt{-ac}e-cd \right ) \left ( \sqrt{-ac}e+cd \right ) ^{-1}}} \right ) \sqrt{-ac}c{d}^{2}e+\sqrt{-{c \left ( ex+d \right ) \left ( \sqrt{-ac}e-cd \right ) ^{-1}}}\sqrt{{e \left ( -cx+\sqrt{-ac} \right ) \left ( \sqrt{-ac}e+cd \right ) ^{-1}}}\sqrt{{e \left ( cx+\sqrt{-ac} \right ) \left ( \sqrt{-ac}e-cd \right ) ^{-1}}}{\it EllipticE} \left ( \sqrt{-{c \left ( ex+d \right ) \left ( \sqrt{-ac}e-cd \right ) ^{-1}}},\sqrt{-{ \left ( \sqrt{-ac}e-cd \right ) \left ( \sqrt{-ac}e+cd \right ) ^{-1}}} \right ) acd{e}^{2}+\sqrt{-{c \left ( ex+d \right ) \left ( \sqrt{-ac}e-cd \right ) ^{-1}}}\sqrt{{e \left ( -cx+\sqrt{-ac} \right ) \left ( \sqrt{-ac}e+cd \right ) ^{-1}}}\sqrt{{e \left ( cx+\sqrt{-ac} \right ) \left ( \sqrt{-ac}e-cd \right ) ^{-1}}}{\it EllipticE} \left ( \sqrt{-{c \left ( ex+d \right ) \left ( \sqrt{-ac}e-cd \right ) ^{-1}}},\sqrt{-{ \left ( \sqrt{-ac}e-cd \right ) \left ( \sqrt{-ac}e+cd \right ) ^{-1}}} \right ){c}^{2}{d}^{3}+{x}^{2}{c}^{2}d{e}^{2}+xac{e}^{3}+x{c}^{2}{d}^{2}e+ad{e}^{2}c \right ) \sqrt{ex+d}\sqrt{c{x}^{2}+a}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x^2+a)^(3/2)/(e*x+d)^(1/2),x)

[Out]

(-(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2
))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a
*c)^(1/2)*e+c*d))^(1/2))*(-a*c)^(1/2)*a*e^3-(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-
a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)
*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*(-a*c)^(1/2)*c*d^2*e+(-(e*x+d)*c/((-a*c)^(1
/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d
))^(1/2)*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))
*a*c*d*e^2+(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-
a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-
c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*c^2*d^3+x^2*c^2*d*e^2+x*a*c*e^3+x*c^2*d^2*e+a*d*e^2*c)*(e*x+d)^(1/2)*(c*x^2+
a)^(1/2)/e/c/a/(a*e^2+c*d^2)/(c*e*x^3+c*d*x^2+a*e*x+a*d)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{2} + a\right )}^{\frac{3}{2}} \sqrt{e x + d}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^2+a)^(3/2)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((c*x^2 + a)^(3/2)*sqrt(e*x + d)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + a} \sqrt{e x + d}}{c^{2} e x^{5} + c^{2} d x^{4} + 2 \, a c e x^{3} + 2 \, a c d x^{2} + a^{2} e x + a^{2} d}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^2+a)^(3/2)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + a)*sqrt(e*x + d)/(c^2*e*x^5 + c^2*d*x^4 + 2*a*c*e*x^3 + 2*a*c*d*x^2 + a^2*e*x + a^2*d),
x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + c x^{2}\right )^{\frac{3}{2}} \sqrt{d + e x}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x**2+a)**(3/2)/(e*x+d)**(1/2),x)

[Out]

Integral(1/((a + c*x**2)**(3/2)*sqrt(d + e*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{2} + a\right )}^{\frac{3}{2}} \sqrt{e x + d}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^2+a)^(3/2)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((c*x^2 + a)^(3/2)*sqrt(e*x + d)), x)