3.683 $$\int \frac{1}{(d+e x)^{5/2} \sqrt{a+c x^2}} \, dx$$

Optimal. Leaf size=382 $\frac{2 \sqrt{-a} \sqrt{c} \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right ),-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 \sqrt{a+c x^2} \sqrt{d+e x} \left (a e^2+c d^2\right )}-\frac{8 \sqrt{-a} c^{3/2} d \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 \sqrt{a+c x^2} \left (a e^2+c d^2\right )^2 \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}-\frac{8 c d e \sqrt{a+c x^2}}{3 \sqrt{d+e x} \left (a e^2+c d^2\right )^2}-\frac{2 e \sqrt{a+c x^2}}{3 (d+e x)^{3/2} \left (a e^2+c d^2\right )}$

[Out]

(-2*e*Sqrt[a + c*x^2])/(3*(c*d^2 + a*e^2)*(d + e*x)^(3/2)) - (8*c*d*e*Sqrt[a + c*x^2])/(3*(c*d^2 + a*e^2)^2*Sq
rt[d + e*x]) - (8*Sqrt[-a]*c^(3/2)*d*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/S
qrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(3*(c*d^2 + a*e^2)^2*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c
]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2]) + (2*Sqrt[-a]*Sqrt[c]*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*S
qrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*
e)])/(3*(c*d^2 + a*e^2)*Sqrt[d + e*x]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.265522, antiderivative size = 382, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 21, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.286, Rules used = {745, 835, 844, 719, 424, 419} $-\frac{8 \sqrt{-a} c^{3/2} d \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 \sqrt{a+c x^2} \left (a e^2+c d^2\right )^2 \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}-\frac{8 c d e \sqrt{a+c x^2}}{3 \sqrt{d+e x} \left (a e^2+c d^2\right )^2}-\frac{2 e \sqrt{a+c x^2}}{3 (d+e x)^{3/2} \left (a e^2+c d^2\right )}+\frac{2 \sqrt{-a} \sqrt{c} \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 \sqrt{a+c x^2} \sqrt{d+e x} \left (a e^2+c d^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((d + e*x)^(5/2)*Sqrt[a + c*x^2]),x]

[Out]

(-2*e*Sqrt[a + c*x^2])/(3*(c*d^2 + a*e^2)*(d + e*x)^(3/2)) - (8*c*d*e*Sqrt[a + c*x^2])/(3*(c*d^2 + a*e^2)^2*Sq
rt[d + e*x]) - (8*Sqrt[-a]*c^(3/2)*d*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/S
qrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(3*(c*d^2 + a*e^2)^2*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c
]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2]) + (2*Sqrt[-a]*Sqrt[c]*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*S
qrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*
e)])/(3*(c*d^2 + a*e^2)*Sqrt[d + e*x]*Sqrt[a + c*x^2])

Rule 745

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m + 1)*(a + c*x^2)^(p
+ 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Dist[c/((m + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^(m + 1)*Simp[d*(m + 1)
- e*(m + 2*p + 3)*x, x]*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[
m, -1] && ((LtQ[m, -1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]) || (SumSimplerQ[m, 1] && IntegerQ[p]) || ILtQ
[Simplify[m + 2*p + 3], 0])

Rule 835

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((e*f - d*g)
*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Dist[1/((m + 1)*(c*d^2 + a*e^2)), Int[
(d + e*x)^(m + 1)*(a + c*x^2)^p*Simp[(c*d*f + a*e*g)*(m + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; Fr
eeQ[{a, c, d, e, f, g, p}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || Integer
sQ[2*m, 2*p])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{1}{(d+e x)^{5/2} \sqrt{a+c x^2}} \, dx &=-\frac{2 e \sqrt{a+c x^2}}{3 \left (c d^2+a e^2\right ) (d+e x)^{3/2}}-\frac{(2 c) \int \frac{-\frac{3 d}{2}+\frac{e x}{2}}{(d+e x)^{3/2} \sqrt{a+c x^2}} \, dx}{3 \left (c d^2+a e^2\right )}\\ &=-\frac{2 e \sqrt{a+c x^2}}{3 \left (c d^2+a e^2\right ) (d+e x)^{3/2}}-\frac{8 c d e \sqrt{a+c x^2}}{3 \left (c d^2+a e^2\right )^2 \sqrt{d+e x}}+\frac{(4 c) \int \frac{\frac{1}{4} \left (3 c d^2-a e^2\right )+c d e x}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{3 \left (c d^2+a e^2\right )^2}\\ &=-\frac{2 e \sqrt{a+c x^2}}{3 \left (c d^2+a e^2\right ) (d+e x)^{3/2}}-\frac{8 c d e \sqrt{a+c x^2}}{3 \left (c d^2+a e^2\right )^2 \sqrt{d+e x}}+\frac{\left (4 c^2 d\right ) \int \frac{\sqrt{d+e x}}{\sqrt{a+c x^2}} \, dx}{3 \left (c d^2+a e^2\right )^2}-\frac{c \int \frac{1}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{3 \left (c d^2+a e^2\right )}\\ &=-\frac{2 e \sqrt{a+c x^2}}{3 \left (c d^2+a e^2\right ) (d+e x)^{3/2}}-\frac{8 c d e \sqrt{a+c x^2}}{3 \left (c d^2+a e^2\right )^2 \sqrt{d+e x}}+\frac{\left (8 a c^{3/2} d \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{3 \sqrt{-a} \left (c d^2+a e^2\right )^2 \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{a+c x^2}}-\frac{\left (2 a \sqrt{c} \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{3 \sqrt{-a} \left (c d^2+a e^2\right ) \sqrt{d+e x} \sqrt{a+c x^2}}\\ &=-\frac{2 e \sqrt{a+c x^2}}{3 \left (c d^2+a e^2\right ) (d+e x)^{3/2}}-\frac{8 c d e \sqrt{a+c x^2}}{3 \left (c d^2+a e^2\right )^2 \sqrt{d+e x}}-\frac{8 \sqrt{-a} c^{3/2} d \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 \left (c d^2+a e^2\right )^2 \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{a+c x^2}}+\frac{2 \sqrt{-a} \sqrt{c} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{1+\frac{c x^2}{a}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 \left (c d^2+a e^2\right ) \sqrt{d+e x} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 1.66069, size = 494, normalized size = 1.29 $\frac{2 \left (-e^2 \left (a+c x^2\right ) \left (a e^2+c d (5 d+4 e x)\right )+\frac{c (d+e x) \left (i (d+e x)^{3/2} \left (4 i \sqrt{a} \sqrt{c} d e-a e^2+3 c d^2\right ) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right ),\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )+4 d e^2 \left (a+c x^2\right ) \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}+4 \sqrt{c} d (d+e x)^{3/2} \left (\sqrt{a} e-i \sqrt{c} d\right ) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right )|\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )\right )}{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}\right )}{3 e \sqrt{a+c x^2} (d+e x)^{3/2} \left (a e^2+c d^2\right )^2}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((d + e*x)^(5/2)*Sqrt[a + c*x^2]),x]

[Out]

(2*(-(e^2*(a + c*x^2)*(a*e^2 + c*d*(5*d + 4*e*x))) + (c*(d + e*x)*(4*d*e^2*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*(a
+ c*x^2) + 4*Sqrt[c]*d*((-I)*Sqrt[c]*d + Sqrt[a]*e)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*
Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*EllipticE[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqr
t[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)] + I*(3*c*d^2 + (4*I)*Sqrt[a]*Sqrt[c]*d*e - a
*e^2)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)
^(3/2)*EllipticF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]
*d + I*Sqrt[a]*e)]))/Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]))/(3*e*(c*d^2 + a*e^2)^2*(d + e*x)^(3/2)*Sqrt[a + c*x^2]
)

________________________________________________________________________________________

Maple [B]  time = 0.284, size = 1904, normalized size = 5. \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(5/2)/(c*x^2+a)^(1/2),x)

[Out]

2/3*(3*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x
*a*c*d*e^3*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-
a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-
c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x*a*e^4*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*
c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*(-a*c)^(1/2)+3*EllipticF((-(e*x+d)*c/
((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x*c^2*d^3*e*(-(e*x+d)*c/((-a*c
)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e
-c*d))^(1/2)+EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1
/2))*x*c*d^2*e^2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((
c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*(-a*c)^(1/2)-4*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/
2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x*a*c*d*e^3*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-
c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-4*EllipticE(
(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x*c^2*d^3*e*(-(e*x
+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-
a*c)^(1/2)*e-c*d))^(1/2)+3*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d)
)^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-
((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*c*d^2*e^2+(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(
-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+
d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*(-a*c)^(1/2)*a*d*e^3+3*(-
(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e
/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^
(1/2)*e+c*d))^(1/2))*c^2*d^4+(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*
d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),
(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*(-a*c)^(1/2)*c*d^3*e-4*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(
1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*Elli
pticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*c*d^2*e^2-
4*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2
))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a
*c)^(1/2)*e+c*d))^(1/2))*c^2*d^4-4*x^3*c^2*d*e^3-x^2*a*c*e^4-5*x^2*c^2*d^2*e^2-4*x*a*c*d*e^3-a^2*e^4-5*a*c*d^2
*e^2)/(c*x^2+a)^(1/2)/(a*e^2+c*d^2)^2/(e*x+d)^(3/2)/e

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{2} + a}{\left (e x + d\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(5/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + a)*(e*x + d)^(5/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + a} \sqrt{e x + d}}{c e^{3} x^{5} + 3 \, c d e^{2} x^{4} + 3 \, a d^{2} e x + a d^{3} +{\left (3 \, c d^{2} e + a e^{3}\right )} x^{3} +{\left (c d^{3} + 3 \, a d e^{2}\right )} x^{2}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(5/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + a)*sqrt(e*x + d)/(c*e^3*x^5 + 3*c*d*e^2*x^4 + 3*a*d^2*e*x + a*d^3 + (3*c*d^2*e + a*e^3)*
x^3 + (c*d^3 + 3*a*d*e^2)*x^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a + c x^{2}} \left (d + e x\right )^{\frac{5}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(5/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral(1/(sqrt(a + c*x**2)*(d + e*x)**(5/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{2} + a}{\left (e x + d\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(5/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + a)*(e*x + d)^(5/2)), x)