### 3.678 $$\int \frac{(d+e x)^{5/2}}{\sqrt{a+c x^2}} \, dx$$

Optimal. Leaf size=359 $\frac{16 \sqrt{-a} d \sqrt{\frac{c x^2}{a}+1} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right ),-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{15 c^{3/2} \sqrt{a+c x^2} \sqrt{d+e x}}-\frac{2 \sqrt{-a} \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} \left (23 c d^2-9 a e^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{15 c^{3/2} \sqrt{a+c x^2} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}+\frac{2 e \sqrt{a+c x^2} (d+e x)^{3/2}}{5 c}+\frac{16 d e \sqrt{a+c x^2} \sqrt{d+e x}}{15 c}$

[Out]

(16*d*e*Sqrt[d + e*x]*Sqrt[a + c*x^2])/(15*c) + (2*e*(d + e*x)^(3/2)*Sqrt[a + c*x^2])/(5*c) - (2*Sqrt[-a]*(23*
c*d^2 - 9*a*e^2)*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (
-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(15*c^(3/2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c
*x^2]) + (16*Sqrt[-a]*d*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]
*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(15*c^(3/2)*S
qrt[d + e*x]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.32498, antiderivative size = 359, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 21, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.286, Rules used = {743, 833, 844, 719, 424, 419} $\frac{16 \sqrt{-a} d \sqrt{\frac{c x^2}{a}+1} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{15 c^{3/2} \sqrt{a+c x^2} \sqrt{d+e x}}-\frac{2 \sqrt{-a} \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} \left (23 c d^2-9 a e^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{15 c^{3/2} \sqrt{a+c x^2} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}+\frac{2 e \sqrt{a+c x^2} (d+e x)^{3/2}}{5 c}+\frac{16 d e \sqrt{a+c x^2} \sqrt{d+e x}}{15 c}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^(5/2)/Sqrt[a + c*x^2],x]

[Out]

(16*d*e*Sqrt[d + e*x]*Sqrt[a + c*x^2])/(15*c) + (2*e*(d + e*x)^(3/2)*Sqrt[a + c*x^2])/(5*c) - (2*Sqrt[-a]*(23*
c*d^2 - 9*a*e^2)*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (
-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(15*c^(3/2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c
*x^2]) + (16*Sqrt[-a]*d*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]
*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(15*c^(3/2)*S
qrt[d + e*x]*Sqrt[a + c*x^2])

Rule 743

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)*(a + c*x^2)^(p
+ 1))/(c*(m + 2*p + 1)), x] + Dist[1/(c*(m + 2*p + 1)), Int[(d + e*x)^(m - 2)*Simp[c*d^2*(m + 2*p + 1) - a*e^
2*(m - 1) + 2*c*d*e*(m + p)*x, x]*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2,
0] && If[RationalQ[m], GtQ[m, 1], SumSimplerQ[m, -2]] && NeQ[m + 2*p + 1, 0] && IntQuadraticQ[a, 0, c, d, e, m
, p, x]

Rule 833

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(g*(d + e*x)
^m*(a + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^p*
Simp[c*d*f*(m + 2*p + 2) - a*e*g*m + c*(e*f*(m + 2*p + 2) + d*g*m)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, p
}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p]) &&  !(IGtQ[m, 0] && EqQ[f, 0])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{(d+e x)^{5/2}}{\sqrt{a+c x^2}} \, dx &=\frac{2 e (d+e x)^{3/2} \sqrt{a+c x^2}}{5 c}+\frac{2 \int \frac{\sqrt{d+e x} \left (\frac{1}{2} \left (5 c d^2-3 a e^2\right )+4 c d e x\right )}{\sqrt{a+c x^2}} \, dx}{5 c}\\ &=\frac{16 d e \sqrt{d+e x} \sqrt{a+c x^2}}{15 c}+\frac{2 e (d+e x)^{3/2} \sqrt{a+c x^2}}{5 c}+\frac{4 \int \frac{\frac{1}{4} c d \left (15 c d^2-17 a e^2\right )+\frac{1}{4} c e \left (23 c d^2-9 a e^2\right ) x}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{15 c^2}\\ &=\frac{16 d e \sqrt{d+e x} \sqrt{a+c x^2}}{15 c}+\frac{2 e (d+e x)^{3/2} \sqrt{a+c x^2}}{5 c}+\frac{\left (23 c d^2-9 a e^2\right ) \int \frac{\sqrt{d+e x}}{\sqrt{a+c x^2}} \, dx}{15 c}-\frac{\left (8 d \left (c d^2+a e^2\right )\right ) \int \frac{1}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{15 c}\\ &=\frac{16 d e \sqrt{d+e x} \sqrt{a+c x^2}}{15 c}+\frac{2 e (d+e x)^{3/2} \sqrt{a+c x^2}}{5 c}+\frac{\left (2 a \left (23 c d^2-9 a e^2\right ) \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{15 \sqrt{-a} c^{3/2} \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{a+c x^2}}-\frac{\left (16 a d \left (c d^2+a e^2\right ) \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{15 \sqrt{-a} c^{3/2} \sqrt{d+e x} \sqrt{a+c x^2}}\\ &=\frac{16 d e \sqrt{d+e x} \sqrt{a+c x^2}}{15 c}+\frac{2 e (d+e x)^{3/2} \sqrt{a+c x^2}}{5 c}-\frac{2 \sqrt{-a} \left (23 c d^2-9 a e^2\right ) \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{15 c^{3/2} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{a+c x^2}}+\frac{16 \sqrt{-a} d \left (c d^2+a e^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{1+\frac{c x^2}{a}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{15 c^{3/2} \sqrt{d+e x} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 3.05718, size = 557, normalized size = 1.55 $\frac{\sqrt{d+e x} \left (\frac{2 e \left (a+c x^2\right ) (11 d+3 e x)}{c}+\frac{2 \left (\sqrt{c} (d+e x)^{3/2} \left (9 a^{3/2} e^3-23 \sqrt{a} c d^2 e-17 i a \sqrt{c} d e^2+15 i c^{3/2} d^3\right ) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right ),\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )+e^2 \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}} \left (-9 a^2 e^2+a c \left (23 d^2-9 e^2 x^2\right )+23 c^2 d^2 x^2\right )+\sqrt{c} (d+e x)^{3/2} \left (-9 a^{3/2} e^3+23 \sqrt{a} c d^2 e+9 i a \sqrt{c} d e^2-23 i c^{3/2} d^3\right ) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right )|\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )\right )}{c^2 e (d+e x) \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}\right )}{15 \sqrt{a+c x^2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^(5/2)/Sqrt[a + c*x^2],x]

[Out]

(Sqrt[d + e*x]*((2*e*(11*d + 3*e*x)*(a + c*x^2))/c + (2*(e^2*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*(-9*a^2*e^2 + 23
*c^2*d^2*x^2 + a*c*(23*d^2 - 9*e^2*x^2)) + Sqrt[c]*((-23*I)*c^(3/2)*d^3 + 23*Sqrt[a]*c*d^2*e + (9*I)*a*Sqrt[c]
*d*e^2 - 9*a^(3/2)*e^3)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d
+ e*x))]*(d + e*x)^(3/2)*EllipticE[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*S
qrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)] + Sqrt[c]*((15*I)*c^(3/2)*d^3 - 23*Sqrt[a]*c*d^2*e - (17*I)*a*Sqrt[c]*d*e
^2 + 9*a^(3/2)*e^3)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*
x))]*(d + e*x)^(3/2)*EllipticF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[
a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)]))/(c^2*e*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*(d + e*x))))/(15*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.287, size = 1312, normalized size = 3.7 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(5/2)/(c*x^2+a)^(1/2),x)

[Out]

-2/15*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)*(9*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^
(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*
d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a^2*e^4-6*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2
)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*Ellipti
cF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*c*d^2*e^2-8*(
-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*
e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)
^(1/2)*e+c*d))^(1/2))*(-a*c)^(1/2)*a*d*e^3-15*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/(
(-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/
2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*c^2*d^4-8*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d
))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*
EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*(-a*c)^(
1/2)*c*d^3*e-9*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*
x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2
)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a^2*e^4+14*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*
e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticE((-(e*x+d)*c/((-a*c)^
(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*c*d^2*e^2+23*(-(e*x+d)*c/((-a*c)^(1/
2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d)
)^(1/2)*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*
c^2*d^4-3*x^4*c^2*e^4-14*x^3*c^2*d*e^3-3*x^2*a*c*e^4-11*x^2*c^2*d^2*e^2-14*x*a*c*d*e^3-11*a*c*d^2*e^2)/c^2/e/(
c*e*x^3+c*d*x^2+a*e*x+a*d)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{5}{2}}}{\sqrt{c x^{2} + a}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(5/2)/sqrt(c*x^2 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (e^{2} x^{2} + 2 \, d e x + d^{2}\right )} \sqrt{e x + d}}{\sqrt{c x^{2} + a}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral((e^2*x^2 + 2*d*e*x + d^2)*sqrt(e*x + d)/sqrt(c*x^2 + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d + e x\right )^{\frac{5}{2}}}{\sqrt{a + c x^{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(5/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral((d + e*x)**(5/2)/sqrt(a + c*x**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{5}{2}}}{\sqrt{c x^{2} + a}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x + d)^(5/2)/sqrt(c*x^2 + a), x)