### 3.668 $$\int \frac{(a+c x^2)^{3/2}}{(d+e x)^{7/2}} \, dx$$

Optimal. Leaf size=410 $\frac{32 \sqrt{-a} c^{3/2} d \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right ),-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{5 e^4 \sqrt{a+c x^2} \sqrt{d+e x}}-\frac{8 \sqrt{-a} c^{3/2} \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} \left (3 a e^2+4 c d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{5 e^4 \sqrt{a+c x^2} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}-\frac{4 c \sqrt{a+c x^2} \left (e x \left (3 a e^2+5 c d^2\right )+2 d \left (a e^2+2 c d^2\right )\right )}{5 e^3 (d+e x)^{3/2} \left (a e^2+c d^2\right )}-\frac{2 \left (a+c x^2\right )^{3/2}}{5 e (d+e x)^{5/2}}$

[Out]

(-4*c*(2*d*(2*c*d^2 + a*e^2) + e*(5*c*d^2 + 3*a*e^2)*x)*Sqrt[a + c*x^2])/(5*e^3*(c*d^2 + a*e^2)*(d + e*x)^(3/2
)) - (2*(a + c*x^2)^(3/2))/(5*e*(d + e*x)^(5/2)) - (8*Sqrt[-a]*c^(3/2)*(4*c*d^2 + 3*a*e^2)*Sqrt[d + e*x]*Sqrt[
1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])
/(5*e^4*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2]) + (32*Sqrt[-a]*c^(
3/2)*d*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[
c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(5*e^4*Sqrt[d + e*x]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.314088, antiderivative size = 410, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 21, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.286, Rules used = {733, 811, 844, 719, 424, 419} $-\frac{8 \sqrt{-a} c^{3/2} \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} \left (3 a e^2+4 c d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{5 e^4 \sqrt{a+c x^2} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}+\frac{32 \sqrt{-a} c^{3/2} d \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{5 e^4 \sqrt{a+c x^2} \sqrt{d+e x}}-\frac{4 c \sqrt{a+c x^2} \left (e x \left (3 a e^2+5 c d^2\right )+2 d \left (a e^2+2 c d^2\right )\right )}{5 e^3 (d+e x)^{3/2} \left (a e^2+c d^2\right )}-\frac{2 \left (a+c x^2\right )^{3/2}}{5 e (d+e x)^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(a + c*x^2)^(3/2)/(d + e*x)^(7/2),x]

[Out]

(-4*c*(2*d*(2*c*d^2 + a*e^2) + e*(5*c*d^2 + 3*a*e^2)*x)*Sqrt[a + c*x^2])/(5*e^3*(c*d^2 + a*e^2)*(d + e*x)^(3/2
)) - (2*(a + c*x^2)^(3/2))/(5*e*(d + e*x)^(5/2)) - (8*Sqrt[-a]*c^(3/2)*(4*c*d^2 + 3*a*e^2)*Sqrt[d + e*x]*Sqrt[
1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])
/(5*e^4*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2]) + (32*Sqrt[-a]*c^(
3/2)*d*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[
c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(5*e^4*Sqrt[d + e*x]*Sqrt[a + c*x^2])

Rule 733

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(a + c*x^2)^p)/(
e*(m + 1)), x] - Dist[(2*c*p)/(e*(m + 1)), Int[x*(d + e*x)^(m + 1)*(a + c*x^2)^(p - 1), x], x] /; FreeQ[{a, c,
d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] || LtQ[m, -1]) && NeQ[m, -1] &&  !ILtQ[m +
2*p + 1, 0] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 811

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((d + e*x)^
(m + 1)*(a + c*x^2)^p*((d*g - e*f*(m + 2))*(c*d^2 + a*e^2) - 2*c*d^2*p*(e*f - d*g) - e*(g*(m + 1)*(c*d^2 + a*e
^2) + 2*c*d*p*(e*f - d*g))*x))/(e^2*(m + 1)*(m + 2)*(c*d^2 + a*e^2)), x] - Dist[p/(e^2*(m + 1)*(m + 2)*(c*d^2
+ a*e^2)), Int[(d + e*x)^(m + 2)*(a + c*x^2)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) - c*(2*c*d*(d*g*(2*p + 1
) - e*f*(m + 2*p + 2)) - 2*a*e^2*g*(m + 1))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2
, 0] && GtQ[p, 0] && LtQ[m, -2] && LtQ[m + 2*p, 0] &&  !ILtQ[m + 2*p + 3, 0]

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\left (a+c x^2\right )^{3/2}}{(d+e x)^{7/2}} \, dx &=-\frac{2 \left (a+c x^2\right )^{3/2}}{5 e (d+e x)^{5/2}}+\frac{(6 c) \int \frac{x \sqrt{a+c x^2}}{(d+e x)^{5/2}} \, dx}{5 e}\\ &=-\frac{4 c \left (2 d \left (2 c d^2+a e^2\right )+e \left (5 c d^2+3 a e^2\right ) x\right ) \sqrt{a+c x^2}}{5 e^3 \left (c d^2+a e^2\right ) (d+e x)^{3/2}}-\frac{2 \left (a+c x^2\right )^{3/2}}{5 e (d+e x)^{5/2}}-\frac{(4 c) \int \frac{a c d e-c \left (4 c d^2+3 a e^2\right ) x}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{5 e^3 \left (c d^2+a e^2\right )}\\ &=-\frac{4 c \left (2 d \left (2 c d^2+a e^2\right )+e \left (5 c d^2+3 a e^2\right ) x\right ) \sqrt{a+c x^2}}{5 e^3 \left (c d^2+a e^2\right ) (d+e x)^{3/2}}-\frac{2 \left (a+c x^2\right )^{3/2}}{5 e (d+e x)^{5/2}}-\frac{\left (16 c^2 d\right ) \int \frac{1}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{5 e^4}+\frac{\left (4 c^2 \left (4 c d^2+3 a e^2\right )\right ) \int \frac{\sqrt{d+e x}}{\sqrt{a+c x^2}} \, dx}{5 e^4 \left (c d^2+a e^2\right )}\\ &=-\frac{4 c \left (2 d \left (2 c d^2+a e^2\right )+e \left (5 c d^2+3 a e^2\right ) x\right ) \sqrt{a+c x^2}}{5 e^3 \left (c d^2+a e^2\right ) (d+e x)^{3/2}}-\frac{2 \left (a+c x^2\right )^{3/2}}{5 e (d+e x)^{5/2}}+\frac{\left (8 a c^{3/2} \left (4 c d^2+3 a e^2\right ) \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{5 \sqrt{-a} e^4 \left (c d^2+a e^2\right ) \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{a+c x^2}}-\frac{\left (32 a c^{3/2} d \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{5 \sqrt{-a} e^4 \sqrt{d+e x} \sqrt{a+c x^2}}\\ &=-\frac{4 c \left (2 d \left (2 c d^2+a e^2\right )+e \left (5 c d^2+3 a e^2\right ) x\right ) \sqrt{a+c x^2}}{5 e^3 \left (c d^2+a e^2\right ) (d+e x)^{3/2}}-\frac{2 \left (a+c x^2\right )^{3/2}}{5 e (d+e x)^{5/2}}-\frac{8 \sqrt{-a} c^{3/2} \left (4 c d^2+3 a e^2\right ) \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{5 e^4 \left (c d^2+a e^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{a+c x^2}}+\frac{32 \sqrt{-a} c^{3/2} d \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{1+\frac{c x^2}{a}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{5 e^4 \sqrt{d+e x} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 2.86323, size = 602, normalized size = 1.47 $\frac{2 \left (-e^2 \left (a+c x^2\right ) \left (-4 c d (d+e x) \left (a e^2+c d^2\right )+c (d+e x)^2 \left (7 a e^2+11 c d^2\right )+\left (a e^2+c d^2\right )^2\right )+\frac{4 c (d+e x)^2 \left (-\sqrt{a} \sqrt{c} e (d+e x)^{3/2} \left (i \sqrt{a} \sqrt{c} d e+3 a e^2+4 c d^2\right ) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right ),\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )+e^2 \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}} \left (3 a^2 e^2+a c \left (4 d^2+3 e^2 x^2\right )+4 c^2 d^2 x^2\right )+\sqrt{c} (d+e x)^{3/2} \left (3 a^{3/2} e^3+4 \sqrt{a} c d^2 e-3 i a \sqrt{c} d e^2-4 i c^{3/2} d^3\right ) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right )|\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )\right )}{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}\right )}{5 e^5 \sqrt{a+c x^2} (d+e x)^{5/2} \left (a e^2+c d^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(a + c*x^2)^(3/2)/(d + e*x)^(7/2),x]

[Out]

(2*(-(e^2*(a + c*x^2)*((c*d^2 + a*e^2)^2 - 4*c*d*(c*d^2 + a*e^2)*(d + e*x) + c*(11*c*d^2 + 7*a*e^2)*(d + e*x)^
2)) + (4*c*(d + e*x)^2*(e^2*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*(3*a^2*e^2 + 4*c^2*d^2*x^2 + a*c*(4*d^2 + 3*e^2*x
^2)) + Sqrt[c]*((-4*I)*c^(3/2)*d^3 + 4*Sqrt[a]*c*d^2*e - (3*I)*a*Sqrt[c]*d*e^2 + 3*a^(3/2)*e^3)*Sqrt[(e*((I*Sq
rt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*EllipticE[I*A
rcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)] -
Sqrt[a]*Sqrt[c]*e*(4*c*d^2 + I*Sqrt[a]*Sqrt[c]*d*e + 3*a*e^2)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*S
qrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*EllipticF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sq
rt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)]))/Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]
))/(5*e^5*(c*d^2 + a*e^2)*(d + e*x)^(5/2)*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.273, size = 3411, normalized size = 8.3 \begin{align*} \text{output too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+a)^(3/2)/(e*x+d)^(7/2),x)

[Out]

2/5*(-11*x^4*c^3*d^2*e^4-18*x^3*c^3*d^3*e^3-8*x^2*a^2*c*e^6-8*x^2*c^3*d^4*e^2-7*x^4*a*c^2*e^6-16*x^2*a*c^2*d^2
*e^4-10*x*a^2*c*d*e^5-18*x*a*c^2*d^3*e^3-16*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*
e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*c^3*d^6*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-
a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+16*EllipticF((-(e*x+d)*c/((-a*c)^(1
/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*c^2*d^5*e*(-a*c)^(1/2)*(-(e*x+d)*c/((-a*
c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*
e-c*d))^(1/2)-10*x^3*a*c^2*d*e^5+24*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/(
(-a*c)^(1/2)*e+c*d))^(1/2))*x*a^2*c*d*e^5*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*
c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+24*EllipticF((-(e*x+d)*c/((-a*c)^(1/2
)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x*a*c^2*d^3*e^3*(-(e*x+d)*c/((-a*c)^(1/2)*
e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(
1/2)+32*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*
x*c^2*d^4*e^2*(-a*c)^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d)
)^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-24*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)
,(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x*a^2*c*d*e^5*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-
c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-56*EllipticE
((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x*a*c^2*d^3*e^3*(
-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*
e/((-a*c)^(1/2)*e-c*d))^(1/2)+16*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a
*c)^(1/2)*e+c*d))^(1/2))*a*c*d^3*e^3*(-a*c)^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))
*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+12*EllipticF((-(e*x+d)*c/((-a
*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x^2*a*c^2*d^2*e^4*(-(e*x+d)*c/((-a
*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)
*e-c*d))^(1/2)+16*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d
))^(1/2))*x^2*c^2*d^3*e^3*(-a*c)^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^
(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-28*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e
-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x^2*a*c^2*d^2*e^4*(-(e*x+d)*c/((-a*c)^(1/2)*e
-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1
/2)-12*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a
^2*c*d^2*e^4*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+
(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+12*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/
2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x^2*a^2*c*e^6*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/
2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-28*EllipticE((-(e*x+d)*c/(
(-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*c^2*d^4*e^2*(-(e*x+d)*c/((-a*
c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*
e-c*d))^(1/2)-12*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d)
)^(1/2))*x^2*a^2*c*e^6*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1
/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-16*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-(
(-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x^2*c^3*d^4*e^2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*
x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-32*EllipticE((
-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x*c^3*d^5*e*(-(e*x+
d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a
*c)^(1/2)*e-c*d))^(1/2)+12*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1
/2)*e+c*d))^(1/2))*a^2*c*d^2*e^4*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*
e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+12*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))
^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*c^2*d^4*e^2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/
2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+16*Ell
ipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x^2*a*c*d*e
^5*(-a*c)^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c
*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+32*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^
(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x*a*c*d^2*e^4*(-a*c)^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*(
(-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-a^3*e^6-5*
a^2*c*d^2*e^4-8*a*c^2*d^4*e^2)/(c*x^2+a)^(1/2)/(a*e^2+c*d^2)/(e*x+d)^(5/2)/e^5

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c x^{2} + a\right )}^{\frac{3}{2}}}{{\left (e x + d\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(3/2)/(e*x+d)^(7/2),x, algorithm="maxima")

[Out]

integrate((c*x^2 + a)^(3/2)/(e*x + d)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (c x^{2} + a\right )}^{\frac{3}{2}} \sqrt{e x + d}}{e^{4} x^{4} + 4 \, d e^{3} x^{3} + 6 \, d^{2} e^{2} x^{2} + 4 \, d^{3} e x + d^{4}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(3/2)/(e*x+d)^(7/2),x, algorithm="fricas")

[Out]

integral((c*x^2 + a)^(3/2)*sqrt(e*x + d)/(e^4*x^4 + 4*d*e^3*x^3 + 6*d^2*e^2*x^2 + 4*d^3*e*x + d^4), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + c x^{2}\right )^{\frac{3}{2}}}{\left (d + e x\right )^{\frac{7}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+a)**(3/2)/(e*x+d)**(7/2),x)

[Out]

Integral((a + c*x**2)**(3/2)/(d + e*x)**(7/2), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(3/2)/(e*x+d)^(7/2),x, algorithm="giac")

[Out]

Timed out