3.661 $$\int \frac{\sqrt{a+c x^2}}{(d+e x)^{5/2}} \, dx$$

Optimal. Leaf size=366 $-\frac{4 \sqrt{-a} \sqrt{c} \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right ),-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 e^2 \sqrt{a+c x^2} \sqrt{d+e x}}+\frac{4 \sqrt{-a} c^{3/2} d \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 e^2 \sqrt{a+c x^2} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}+\frac{4 c d \sqrt{a+c x^2}}{3 e \sqrt{d+e x} \left (a e^2+c d^2\right )}-\frac{2 \sqrt{a+c x^2}}{3 e (d+e x)^{3/2}}$

[Out]

(-2*Sqrt[a + c*x^2])/(3*e*(d + e*x)^(3/2)) + (4*c*d*Sqrt[a + c*x^2])/(3*e*(c*d^2 + a*e^2)*Sqrt[d + e*x]) + (4*
Sqrt[-a]*c^(3/2)*d*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]],
(-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(3*e^2*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e
)]*Sqrt[a + c*x^2]) - (4*Sqrt[-a]*Sqrt[c]*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/
a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(3*e^2*Sqrt
[d + e*x]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.272954, antiderivative size = 366, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 21, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.286, Rules used = {733, 835, 844, 719, 424, 419} $\frac{4 \sqrt{-a} c^{3/2} d \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 e^2 \sqrt{a+c x^2} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}+\frac{4 c d \sqrt{a+c x^2}}{3 e \sqrt{d+e x} \left (a e^2+c d^2\right )}-\frac{4 \sqrt{-a} \sqrt{c} \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 e^2 \sqrt{a+c x^2} \sqrt{d+e x}}-\frac{2 \sqrt{a+c x^2}}{3 e (d+e x)^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sqrt[a + c*x^2]/(d + e*x)^(5/2),x]

[Out]

(-2*Sqrt[a + c*x^2])/(3*e*(d + e*x)^(3/2)) + (4*c*d*Sqrt[a + c*x^2])/(3*e*(c*d^2 + a*e^2)*Sqrt[d + e*x]) + (4*
Sqrt[-a]*c^(3/2)*d*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]],
(-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(3*e^2*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e
)]*Sqrt[a + c*x^2]) - (4*Sqrt[-a]*Sqrt[c]*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/
a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(3*e^2*Sqrt
[d + e*x]*Sqrt[a + c*x^2])

Rule 733

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(a + c*x^2)^p)/(
e*(m + 1)), x] - Dist[(2*c*p)/(e*(m + 1)), Int[x*(d + e*x)^(m + 1)*(a + c*x^2)^(p - 1), x], x] /; FreeQ[{a, c,
d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] || LtQ[m, -1]) && NeQ[m, -1] &&  !ILtQ[m +
2*p + 1, 0] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 835

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((e*f - d*g)
*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Dist[1/((m + 1)*(c*d^2 + a*e^2)), Int[
(d + e*x)^(m + 1)*(a + c*x^2)^p*Simp[(c*d*f + a*e*g)*(m + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; Fr
eeQ[{a, c, d, e, f, g, p}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || Integer
sQ[2*m, 2*p])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\sqrt{a+c x^2}}{(d+e x)^{5/2}} \, dx &=-\frac{2 \sqrt{a+c x^2}}{3 e (d+e x)^{3/2}}+\frac{(2 c) \int \frac{x}{(d+e x)^{3/2} \sqrt{a+c x^2}} \, dx}{3 e}\\ &=-\frac{2 \sqrt{a+c x^2}}{3 e (d+e x)^{3/2}}+\frac{4 c d \sqrt{a+c x^2}}{3 e \left (c d^2+a e^2\right ) \sqrt{d+e x}}-\frac{(4 c) \int \frac{-\frac{a e}{2}+\frac{c d x}{2}}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{3 e \left (c d^2+a e^2\right )}\\ &=-\frac{2 \sqrt{a+c x^2}}{3 e (d+e x)^{3/2}}+\frac{4 c d \sqrt{a+c x^2}}{3 e \left (c d^2+a e^2\right ) \sqrt{d+e x}}+\frac{(2 c) \int \frac{1}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{3 e^2}-\frac{\left (2 c^2 d\right ) \int \frac{\sqrt{d+e x}}{\sqrt{a+c x^2}} \, dx}{3 e^2 \left (c d^2+a e^2\right )}\\ &=-\frac{2 \sqrt{a+c x^2}}{3 e (d+e x)^{3/2}}+\frac{4 c d \sqrt{a+c x^2}}{3 e \left (c d^2+a e^2\right ) \sqrt{d+e x}}-\frac{\left (4 a c^{3/2} d \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{3 \sqrt{-a} e^2 \left (c d^2+a e^2\right ) \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{a+c x^2}}+\frac{\left (4 a \sqrt{c} \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{3 \sqrt{-a} e^2 \sqrt{d+e x} \sqrt{a+c x^2}}\\ &=-\frac{2 \sqrt{a+c x^2}}{3 e (d+e x)^{3/2}}+\frac{4 c d \sqrt{a+c x^2}}{3 e \left (c d^2+a e^2\right ) \sqrt{d+e x}}+\frac{4 \sqrt{-a} c^{3/2} d \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 e^2 \left (c d^2+a e^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{a+c x^2}}-\frac{4 \sqrt{-a} \sqrt{c} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{1+\frac{c x^2}{a}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 e^2 \sqrt{d+e x} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 1.17454, size = 504, normalized size = 1.38 $\frac{2 \sqrt{a+c x^2} \left (c d (d+2 e x)-a e^2\right )}{3 (d+e x)^{3/2} \left (a e^3+c d^2 e\right )}-\frac{4 c \left (-\sqrt{a} e (d+e x)^{3/2} \left (\sqrt{c} d+i \sqrt{a} e\right ) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right ),\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )+d e^2 \left (a+c x^2\right ) \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}+\sqrt{c} d (d+e x)^{3/2} \left (\sqrt{a} e-i \sqrt{c} d\right ) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right )|\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )\right )}{3 e^3 \sqrt{a+c x^2} \sqrt{d+e x} \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}} \left (a e^2+c d^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Sqrt[a + c*x^2]/(d + e*x)^(5/2),x]

[Out]

(2*Sqrt[a + c*x^2]*(-(a*e^2) + c*d*(d + 2*e*x)))/(3*(c*d^2*e + a*e^3)*(d + e*x)^(3/2)) - (4*c*(d*e^2*Sqrt[-d -
(I*Sqrt[a]*e)/Sqrt[c]]*(a + c*x^2) + Sqrt[c]*d*((-I)*Sqrt[c]*d + Sqrt[a]*e)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x)
)/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*EllipticE[I*ArcSinh[Sqrt[-d - (I
*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)] - Sqrt[a]*e*(Sqrt[c]
*d + I*Sqrt[a]*e)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x)
)]*(d + e*x)^(3/2)*EllipticF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]
*e)/(Sqrt[c]*d + I*Sqrt[a]*e)]))/(3*e^3*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*(c*d^2 + a*e^2)*Sqrt[d + e*x]*Sqrt[a
+ c*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.278, size = 1309, normalized size = 3.6 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+a)^(1/2)/(e*x+d)^(5/2),x)

[Out]

-2/3*(2*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*
x*a*e^4*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c
)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*(-a*c)^(1/2)+2*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a
*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x*c*d^2*e^2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c
)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*(-a*c)^(1/2)-2*Ellipt
icE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*x*a*c*d*e^3*(-
(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e
/((-a*c)^(1/2)*e-c*d))^(1/2)-2*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c
)^(1/2)*e+c*d))^(1/2))*x*c^2*d^3*e*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2
)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((
-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((
-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*(-a*c)^(1/2)*a*d*e^
3+2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1
/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((
-a*c)^(1/2)*e+c*d))^(1/2))*(-a*c)^(1/2)*c*d^3*e-2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))
*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticE((-(e*x+d)*c/((-a*c)
^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*c*d^2*e^2-2*(-(e*x+d)*c/((-a*c)^(1/
2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d)
)^(1/2)*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*
c^2*d^4-2*x^3*c^2*d*e^3+x^2*a*c*e^4-x^2*c^2*d^2*e^2-2*x*a*c*d*e^3+a^2*e^4-a*c*d^2*e^2)/(c*x^2+a)^(1/2)/(a*e^2+
c*d^2)/e^3/(e*x+d)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2} + a}}{{\left (e x + d\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/(e*x+d)^(5/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + a)/(e*x + d)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + a} \sqrt{e x + d}}{e^{3} x^{3} + 3 \, d e^{2} x^{2} + 3 \, d^{2} e x + d^{3}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/(e*x+d)^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + a)*sqrt(e*x + d)/(e^3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x + d^3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + c x^{2}}}{\left (d + e x\right )^{\frac{5}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+a)**(1/2)/(e*x+d)**(5/2),x)

[Out]

Integral(sqrt(a + c*x**2)/(d + e*x)**(5/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2} + a}}{{\left (e x + d\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/(e*x+d)^(5/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^2 + a)/(e*x + d)^(5/2), x)