### 3.659 $$\int \frac{\sqrt{a+c x^2}}{\sqrt{d+e x}} \, dx$$

Optimal. Leaf size=322 $-\frac{4 \sqrt{-a} \sqrt{\frac{c x^2}{a}+1} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right ),-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 \sqrt{c} e^2 \sqrt{a+c x^2} \sqrt{d+e x}}+\frac{4 \sqrt{-a} \sqrt{c} d \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 e^2 \sqrt{a+c x^2} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}+\frac{2 \sqrt{a+c x^2} \sqrt{d+e x}}{3 e}$

[Out]

(2*Sqrt[d + e*x]*Sqrt[a + c*x^2])/(3*e) + (4*Sqrt[-a]*Sqrt[c]*d*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[Ar
cSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(3*e^2*Sqrt[(Sqrt[c]*(d +
e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2]) - (4*Sqrt[-a]*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[
c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sq
rt[-a]*Sqrt[c]*d - a*e)])/(3*Sqrt[c]*e^2*Sqrt[d + e*x]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.203577, antiderivative size = 322, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 21, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.238, Rules used = {735, 844, 719, 424, 419} $-\frac{4 \sqrt{-a} \sqrt{\frac{c x^2}{a}+1} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 \sqrt{c} e^2 \sqrt{a+c x^2} \sqrt{d+e x}}+\frac{4 \sqrt{-a} \sqrt{c} d \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 e^2 \sqrt{a+c x^2} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}+\frac{2 \sqrt{a+c x^2} \sqrt{d+e x}}{3 e}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sqrt[a + c*x^2]/Sqrt[d + e*x],x]

[Out]

(2*Sqrt[d + e*x]*Sqrt[a + c*x^2])/(3*e) + (4*Sqrt[-a]*Sqrt[c]*d*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[Ar
cSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(3*e^2*Sqrt[(Sqrt[c]*(d +
e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2]) - (4*Sqrt[-a]*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[
c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sq
rt[-a]*Sqrt[c]*d - a*e)])/(3*Sqrt[c]*e^2*Sqrt[d + e*x]*Sqrt[a + c*x^2])

Rule 735

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(a + c*x^2)^p)/(
e*(m + 2*p + 1)), x] + Dist[(2*p)/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[a*e - c*d*x, x]*(a + c*x^2)^(p - 1),
x], x] /; FreeQ[{a, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !Ration
alQ[m] || LtQ[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\sqrt{a+c x^2}}{\sqrt{d+e x}} \, dx &=\frac{2 \sqrt{d+e x} \sqrt{a+c x^2}}{3 e}+\frac{2 \int \frac{a e-c d x}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{3 e}\\ &=\frac{2 \sqrt{d+e x} \sqrt{a+c x^2}}{3 e}+\frac{1}{3} \left (2 \left (a+\frac{c d^2}{e^2}\right )\right ) \int \frac{1}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx-\frac{(2 c d) \int \frac{\sqrt{d+e x}}{\sqrt{a+c x^2}} \, dx}{3 e^2}\\ &=\frac{2 \sqrt{d+e x} \sqrt{a+c x^2}}{3 e}-\frac{\left (4 a \sqrt{c} d \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{3 \sqrt{-a} e^2 \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{a+c x^2}}+\frac{\left (4 a \left (a+\frac{c d^2}{e^2}\right ) \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{3 \sqrt{-a} \sqrt{c} \sqrt{d+e x} \sqrt{a+c x^2}}\\ &=\frac{2 \sqrt{d+e x} \sqrt{a+c x^2}}{3 e}+\frac{4 \sqrt{-a} \sqrt{c} d \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 e^2 \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{a+c x^2}}-\frac{4 \sqrt{-a} \left (a+\frac{c d^2}{e^2}\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{1+\frac{c x^2}{a}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{3 \sqrt{c} \sqrt{d+e x} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 1.98539, size = 456, normalized size = 1.42 $\frac{2 \sqrt{d+e x} \left (e^2 \left (a+c x^2\right )-\frac{2 \left (-\sqrt{a} e (d+e x)^{3/2} \left (\sqrt{c} d+i \sqrt{a} e\right ) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right ),\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )+d e^2 \left (a+c x^2\right ) \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}+\sqrt{c} d (d+e x)^{3/2} \left (\sqrt{a} e-i \sqrt{c} d\right ) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right )|\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )\right )}{(d+e x) \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}\right )}{3 e^3 \sqrt{a+c x^2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Sqrt[a + c*x^2]/Sqrt[d + e*x],x]

[Out]

(2*Sqrt[d + e*x]*(e^2*(a + c*x^2) - (2*(d*e^2*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*(a + c*x^2) + Sqrt[c]*d*((-I)*S
qrt[c]*d + Sqrt[a]*e)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d +
e*x))]*(d + e*x)^(3/2)*EllipticE[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqr
t[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)] - Sqrt[a]*e*(Sqrt[c]*d + I*Sqrt[a]*e)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d
+ e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*EllipticF[I*ArcSinh[Sqrt[-d - (I*Sqr
t[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)]))/(Sqrt[-d - (I*Sqrt[a]*
e)/Sqrt[c]]*(d + e*x))))/(3*e^3*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.26, size = 688, normalized size = 2.1 \begin{align*} -{\frac{2}{3\,c \left ( ce{x}^{3}+cd{x}^{2}+aex+ad \right ){e}^{3}}\sqrt{ex+d}\sqrt{c{x}^{2}+a} \left ( 2\,\sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}}\sqrt{{\frac{ \left ( -cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e+cd}}}\sqrt{{\frac{ \left ( cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e-cd}}}{\it EllipticF} \left ( \sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}},\sqrt{-{\frac{\sqrt{-ac}e-cd}{\sqrt{-ac}e+cd}}} \right ) \sqrt{-ac}a{e}^{3}+2\,\sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}}\sqrt{{\frac{ \left ( -cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e+cd}}}\sqrt{{\frac{ \left ( cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e-cd}}}{\it EllipticF} \left ( \sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}},\sqrt{-{\frac{\sqrt{-ac}e-cd}{\sqrt{-ac}e+cd}}} \right ) \sqrt{-ac}c{d}^{2}e-2\,\sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}}\sqrt{{\frac{ \left ( -cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e+cd}}}\sqrt{{\frac{ \left ( cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e-cd}}}{\it EllipticE} \left ( \sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}},\sqrt{-{\frac{\sqrt{-ac}e-cd}{\sqrt{-ac}e+cd}}} \right ) acd{e}^{2}-2\,\sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}}\sqrt{{\frac{ \left ( -cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e+cd}}}\sqrt{{\frac{ \left ( cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e-cd}}}{\it EllipticE} \left ( \sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}},\sqrt{-{\frac{\sqrt{-ac}e-cd}{\sqrt{-ac}e+cd}}} \right ){c}^{2}{d}^{3}-{x}^{3}{c}^{2}{e}^{3}-{x}^{2}{c}^{2}d{e}^{2}-xac{e}^{3}-ad{e}^{2}c \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+a)^(1/2)/(e*x+d)^(1/2),x)

[Out]

-2/3*(c*x^2+a)^(1/2)*(e*x+d)^(1/2)*(2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(
1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d
))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*(-a*c)^(1/2)*a*e^3+2*(-(e*x+d)*c/((-a*c)^(1/2)*e-
c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/
2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*(-a*c
)^(1/2)*c*d^2*e-2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*(
(c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(
1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*c*d*e^2-2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/
2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticE((-(e*x+d)*c/((-a
*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*c^2*d^3-x^3*c^2*e^3-x^2*c^2*d*e^2-
x*a*c*e^3-a*d*e^2*c)/c/(c*e*x^3+c*d*x^2+a*e*x+a*d)/e^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2} + a}}{\sqrt{e x + d}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + a)/sqrt(e*x + d), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + a}}{\sqrt{e x + d}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + a)/sqrt(e*x + d), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + c x^{2}}}{\sqrt{d + e x}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+a)**(1/2)/(e*x+d)**(1/2),x)

[Out]

Integral(sqrt(a + c*x**2)/sqrt(d + e*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2} + a}}{\sqrt{e x + d}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^2 + a)/sqrt(e*x + d), x)