### 3.626 $$\int \frac{(d+e x)^{3/2}}{(a-c x^2)^2} \, dx$$

Optimal. Leaf size=209 $-\frac{\sqrt{\sqrt{c} d-\sqrt{a} e} \left (\sqrt{a} e+2 \sqrt{c} d\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )}{4 a^{3/2} c^{5/4}}+\frac{\left (2 \sqrt{c} d-\sqrt{a} e\right ) \sqrt{\sqrt{a} e+\sqrt{c} d} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{a} e+\sqrt{c} d}}\right )}{4 a^{3/2} c^{5/4}}+\frac{\sqrt{d+e x} (a e+c d x)}{2 a c \left (a-c x^2\right )}$

[Out]

((a*e + c*d*x)*Sqrt[d + e*x])/(2*a*c*(a - c*x^2)) - (Sqrt[Sqrt[c]*d - Sqrt[a]*e]*(2*Sqrt[c]*d + Sqrt[a]*e)*Arc
Tanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d - Sqrt[a]*e]])/(4*a^(3/2)*c^(5/4)) + ((2*Sqrt[c]*d - Sqrt[a]*e)*Sq
rt[Sqrt[c]*d + Sqrt[a]*e]*ArcTanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d + Sqrt[a]*e]])/(4*a^(3/2)*c^(5/4))

________________________________________________________________________________________

Rubi [A]  time = 0.269905, antiderivative size = 209, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 20, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.2, Rules used = {739, 827, 1166, 208} $-\frac{\sqrt{\sqrt{c} d-\sqrt{a} e} \left (\sqrt{a} e+2 \sqrt{c} d\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )}{4 a^{3/2} c^{5/4}}+\frac{\left (2 \sqrt{c} d-\sqrt{a} e\right ) \sqrt{\sqrt{a} e+\sqrt{c} d} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{a} e+\sqrt{c} d}}\right )}{4 a^{3/2} c^{5/4}}+\frac{\sqrt{d+e x} (a e+c d x)}{2 a c \left (a-c x^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^(3/2)/(a - c*x^2)^2,x]

[Out]

((a*e + c*d*x)*Sqrt[d + e*x])/(2*a*c*(a - c*x^2)) - (Sqrt[Sqrt[c]*d - Sqrt[a]*e]*(2*Sqrt[c]*d + Sqrt[a]*e)*Arc
Tanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d - Sqrt[a]*e]])/(4*a^(3/2)*c^(5/4)) + ((2*Sqrt[c]*d - Sqrt[a]*e)*Sq
rt[Sqrt[c]*d + Sqrt[a]*e]*ArcTanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d + Sqrt[a]*e]])/(4*a^(3/2)*c^(5/4))

Rule 739

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(a*e - c*d*x)*(a
+ c*x^2)^(p + 1))/(2*a*c*(p + 1)), x] + Dist[1/((p + 1)*(-2*a*c)), Int[(d + e*x)^(m - 2)*Simp[a*e^2*(m - 1) -
c*d^2*(2*p + 3) - d*c*e*(m + 2*p + 2)*x, x]*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^
2 + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 827

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2, Subst[Int[(e*f
- d*g + g*x^2)/(c*d^2 + a*e^2 - 2*c*d*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x]
&& NeQ[c*d^2 + a*e^2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(d+e x)^{3/2}}{\left (a-c x^2\right )^2} \, dx &=\frac{(a e+c d x) \sqrt{d+e x}}{2 a c \left (a-c x^2\right )}-\frac{\int \frac{\frac{1}{2} \left (-2 c d^2+a e^2\right )-\frac{1}{2} c d e x}{\sqrt{d+e x} \left (a-c x^2\right )} \, dx}{2 a c}\\ &=\frac{(a e+c d x) \sqrt{d+e x}}{2 a c \left (a-c x^2\right )}-\frac{\operatorname{Subst}\left (\int \frac{\frac{1}{2} c d^2 e+\frac{1}{2} e \left (-2 c d^2+a e^2\right )-\frac{1}{2} c d e x^2}{-c d^2+a e^2+2 c d x^2-c x^4} \, dx,x,\sqrt{d+e x}\right )}{a c}\\ &=\frac{(a e+c d x) \sqrt{d+e x}}{2 a c \left (a-c x^2\right )}-\frac{\left (2 c d^2-\sqrt{a} \sqrt{c} d e-a e^2\right ) \operatorname{Subst}\left (\int \frac{1}{c d-\sqrt{a} \sqrt{c} e-c x^2} \, dx,x,\sqrt{d+e x}\right )}{4 a^{3/2} \sqrt{c}}+\frac{\left (2 c d^2+\sqrt{a} \sqrt{c} d e-a e^2\right ) \operatorname{Subst}\left (\int \frac{1}{c d+\sqrt{a} \sqrt{c} e-c x^2} \, dx,x,\sqrt{d+e x}\right )}{4 a^{3/2} \sqrt{c}}\\ &=\frac{(a e+c d x) \sqrt{d+e x}}{2 a c \left (a-c x^2\right )}-\frac{\sqrt{\sqrt{c} d-\sqrt{a} e} \left (2 \sqrt{c} d+\sqrt{a} e\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )}{4 a^{3/2} c^{5/4}}+\frac{\left (2 \sqrt{c} d-\sqrt{a} e\right ) \sqrt{\sqrt{c} d+\sqrt{a} e} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d+\sqrt{a} e}}\right )}{4 a^{3/2} c^{5/4}}\\ \end{align*}

Mathematica [A]  time = 0.245728, size = 218, normalized size = 1.04 $\frac{\left (c x^2-a\right ) \sqrt{\sqrt{c} d-\sqrt{a} e} \left (\sqrt{a} e+2 \sqrt{c} d\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )-\left (c x^2-a\right ) \left (2 \sqrt{c} d-\sqrt{a} e\right ) \sqrt{\sqrt{a} e+\sqrt{c} d} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{a} e+\sqrt{c} d}}\right )+2 \sqrt{a} \sqrt [4]{c} \sqrt{d+e x} (a e+c d x)}{4 a^{3/2} c^{5/4} \left (a-c x^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^(3/2)/(a - c*x^2)^2,x]

[Out]

(2*Sqrt[a]*c^(1/4)*(a*e + c*d*x)*Sqrt[d + e*x] + Sqrt[Sqrt[c]*d - Sqrt[a]*e]*(2*Sqrt[c]*d + Sqrt[a]*e)*(-a + c
*x^2)*ArcTanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d - Sqrt[a]*e]] - (2*Sqrt[c]*d - Sqrt[a]*e)*Sqrt[Sqrt[c]*d
+ Sqrt[a]*e]*(-a + c*x^2)*ArcTanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d + Sqrt[a]*e]])/(4*a^(3/2)*c^(5/4)*(a
- c*x^2))

________________________________________________________________________________________

Maple [B]  time = 0.214, size = 432, normalized size = 2.1 \begin{align*} -{\frac{de}{ \left ( 2\,c{e}^{2}{x}^{2}-2\,a{e}^{2} \right ) a} \left ( ex+d \right ) ^{{\frac{3}{2}}}}-{\frac{{e}^{3}}{ \left ( 2\,c{e}^{2}{x}^{2}-2\,a{e}^{2} \right ) c}\sqrt{ex+d}}+{\frac{e{d}^{2}}{ \left ( 2\,c{e}^{2}{x}^{2}-2\,a{e}^{2} \right ) a}\sqrt{ex+d}}-{\frac{{e}^{3}}{4}\arctan \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ac{e}^{2}}}}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}}+{\frac{ce{d}^{2}}{2\,a}\arctan \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ac{e}^{2}}}}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}}-{\frac{de}{4\,a}\arctan \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}}-{\frac{{e}^{3}}{4}{\it Artanh} \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ac{e}^{2}}}}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}}+{\frac{ce{d}^{2}}{2\,a}{\it Artanh} \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ac{e}^{2}}}}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}}+{\frac{de}{4\,a}{\it Artanh} \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)/(-c*x^2+a)^2,x)

[Out]

-1/2*e/(c*e^2*x^2-a*e^2)*d/a*(e*x+d)^(3/2)-1/2*e^3/(c*e^2*x^2-a*e^2)/c*(e*x+d)^(1/2)+1/2*e/(c*e^2*x^2-a*e^2)/a
*(e*x+d)^(1/2)*d^2-1/4*e^3/(a*c*e^2)^(1/2)/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c/((-c*d+(a*c
*e^2)^(1/2))*c)^(1/2))+1/2*e/a/(a*c*e^2)^(1/2)/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c/((-c*d+
(a*c*e^2)^(1/2))*c)^(1/2))*c*d^2-1/4*e/a/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c/((-c*d+(a*c*e
^2)^(1/2))*c)^(1/2))*d-1/4*e^3/(a*c*e^2)^(1/2)/((c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c/((c*d+(
a*c*e^2)^(1/2))*c)^(1/2))+1/2*e/a/(a*c*e^2)^(1/2)/((c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c/((c*
d+(a*c*e^2)^(1/2))*c)^(1/2))*c*d^2+1/4*e/a/((c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c/((c*d+(a*c*
e^2)^(1/2))*c)^(1/2))*d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{3}{2}}}{{\left (c x^{2} - a\right )}^{2}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(-c*x^2+a)^2,x, algorithm="maxima")

[Out]

integrate((e*x + d)^(3/2)/(c*x^2 - a)^2, x)

________________________________________________________________________________________

Fricas [B]  time = 2.05388, size = 1423, normalized size = 6.81 \begin{align*} -\frac{{\left (a c^{2} x^{2} - a^{2} c\right )} \sqrt{\frac{a^{3} c^{2} \sqrt{\frac{e^{6}}{a^{3} c^{5}}} + 4 \, c d^{3} - 3 \, a d e^{2}}{a^{3} c^{2}}} \log \left (-{\left (4 \, c d^{2} e^{3} - a e^{5}\right )} \sqrt{e x + d} +{\left (2 \, a^{3} c^{4} d \sqrt{\frac{e^{6}}{a^{3} c^{5}}} + a^{2} c e^{4}\right )} \sqrt{\frac{a^{3} c^{2} \sqrt{\frac{e^{6}}{a^{3} c^{5}}} + 4 \, c d^{3} - 3 \, a d e^{2}}{a^{3} c^{2}}}\right ) -{\left (a c^{2} x^{2} - a^{2} c\right )} \sqrt{\frac{a^{3} c^{2} \sqrt{\frac{e^{6}}{a^{3} c^{5}}} + 4 \, c d^{3} - 3 \, a d e^{2}}{a^{3} c^{2}}} \log \left (-{\left (4 \, c d^{2} e^{3} - a e^{5}\right )} \sqrt{e x + d} -{\left (2 \, a^{3} c^{4} d \sqrt{\frac{e^{6}}{a^{3} c^{5}}} + a^{2} c e^{4}\right )} \sqrt{\frac{a^{3} c^{2} \sqrt{\frac{e^{6}}{a^{3} c^{5}}} + 4 \, c d^{3} - 3 \, a d e^{2}}{a^{3} c^{2}}}\right ) -{\left (a c^{2} x^{2} - a^{2} c\right )} \sqrt{-\frac{a^{3} c^{2} \sqrt{\frac{e^{6}}{a^{3} c^{5}}} - 4 \, c d^{3} + 3 \, a d e^{2}}{a^{3} c^{2}}} \log \left (-{\left (4 \, c d^{2} e^{3} - a e^{5}\right )} \sqrt{e x + d} +{\left (2 \, a^{3} c^{4} d \sqrt{\frac{e^{6}}{a^{3} c^{5}}} - a^{2} c e^{4}\right )} \sqrt{-\frac{a^{3} c^{2} \sqrt{\frac{e^{6}}{a^{3} c^{5}}} - 4 \, c d^{3} + 3 \, a d e^{2}}{a^{3} c^{2}}}\right ) +{\left (a c^{2} x^{2} - a^{2} c\right )} \sqrt{-\frac{a^{3} c^{2} \sqrt{\frac{e^{6}}{a^{3} c^{5}}} - 4 \, c d^{3} + 3 \, a d e^{2}}{a^{3} c^{2}}} \log \left (-{\left (4 \, c d^{2} e^{3} - a e^{5}\right )} \sqrt{e x + d} -{\left (2 \, a^{3} c^{4} d \sqrt{\frac{e^{6}}{a^{3} c^{5}}} - a^{2} c e^{4}\right )} \sqrt{-\frac{a^{3} c^{2} \sqrt{\frac{e^{6}}{a^{3} c^{5}}} - 4 \, c d^{3} + 3 \, a d e^{2}}{a^{3} c^{2}}}\right ) + 4 \,{\left (c d x + a e\right )} \sqrt{e x + d}}{8 \,{\left (a c^{2} x^{2} - a^{2} c\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(-c*x^2+a)^2,x, algorithm="fricas")

[Out]

-1/8*((a*c^2*x^2 - a^2*c)*sqrt((a^3*c^2*sqrt(e^6/(a^3*c^5)) + 4*c*d^3 - 3*a*d*e^2)/(a^3*c^2))*log(-(4*c*d^2*e^
3 - a*e^5)*sqrt(e*x + d) + (2*a^3*c^4*d*sqrt(e^6/(a^3*c^5)) + a^2*c*e^4)*sqrt((a^3*c^2*sqrt(e^6/(a^3*c^5)) + 4
*c*d^3 - 3*a*d*e^2)/(a^3*c^2))) - (a*c^2*x^2 - a^2*c)*sqrt((a^3*c^2*sqrt(e^6/(a^3*c^5)) + 4*c*d^3 - 3*a*d*e^2)
/(a^3*c^2))*log(-(4*c*d^2*e^3 - a*e^5)*sqrt(e*x + d) - (2*a^3*c^4*d*sqrt(e^6/(a^3*c^5)) + a^2*c*e^4)*sqrt((a^3
*c^2*sqrt(e^6/(a^3*c^5)) + 4*c*d^3 - 3*a*d*e^2)/(a^3*c^2))) - (a*c^2*x^2 - a^2*c)*sqrt(-(a^3*c^2*sqrt(e^6/(a^3
*c^5)) - 4*c*d^3 + 3*a*d*e^2)/(a^3*c^2))*log(-(4*c*d^2*e^3 - a*e^5)*sqrt(e*x + d) + (2*a^3*c^4*d*sqrt(e^6/(a^3
*c^5)) - a^2*c*e^4)*sqrt(-(a^3*c^2*sqrt(e^6/(a^3*c^5)) - 4*c*d^3 + 3*a*d*e^2)/(a^3*c^2))) + (a*c^2*x^2 - a^2*c
)*sqrt(-(a^3*c^2*sqrt(e^6/(a^3*c^5)) - 4*c*d^3 + 3*a*d*e^2)/(a^3*c^2))*log(-(4*c*d^2*e^3 - a*e^5)*sqrt(e*x + d
) - (2*a^3*c^4*d*sqrt(e^6/(a^3*c^5)) - a^2*c*e^4)*sqrt(-(a^3*c^2*sqrt(e^6/(a^3*c^5)) - 4*c*d^3 + 3*a*d*e^2)/(a
^3*c^2))) + 4*(c*d*x + a*e)*sqrt(e*x + d))/(a*c^2*x^2 - a^2*c)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)/(-c*x**2+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(-c*x^2+a)^2,x, algorithm="giac")

[Out]

Timed out