### 3.621 $$\int \frac{1}{\sqrt{d+e x} (a+c x^2)} \, dx$$

Optimal. Leaf size=538 $-\frac{e \log \left (-\sqrt{2} \sqrt [4]{c} \sqrt{d+e x} \sqrt{\sqrt{a e^2+c d^2}+\sqrt{c} d}+\sqrt{a e^2+c d^2}+\sqrt{c} (d+e x)\right )}{2 \sqrt{2} \sqrt [4]{c} \sqrt{a e^2+c d^2} \sqrt{\sqrt{a e^2+c d^2}+\sqrt{c} d}}+\frac{e \log \left (\sqrt{2} \sqrt [4]{c} \sqrt{d+e x} \sqrt{\sqrt{a e^2+c d^2}+\sqrt{c} d}+\sqrt{a e^2+c d^2}+\sqrt{c} (d+e x)\right )}{2 \sqrt{2} \sqrt [4]{c} \sqrt{a e^2+c d^2} \sqrt{\sqrt{a e^2+c d^2}+\sqrt{c} d}}+\frac{e \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a e^2+c d^2}+\sqrt{c} d}-\sqrt{2} \sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a e^2+c d^2}}}\right )}{\sqrt{2} \sqrt [4]{c} \sqrt{a e^2+c d^2} \sqrt{\sqrt{c} d-\sqrt{a e^2+c d^2}}}-\frac{e \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a e^2+c d^2}+\sqrt{c} d}+\sqrt{2} \sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a e^2+c d^2}}}\right )}{\sqrt{2} \sqrt [4]{c} \sqrt{a e^2+c d^2} \sqrt{\sqrt{c} d-\sqrt{a e^2+c d^2}}}$

[Out]

(e*ArcTanh[(Sqrt[Sqrt[c]*d + Sqrt[c*d^2 + a*e^2]] - Sqrt[2]*c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d - Sqrt[c*d^2
+ a*e^2]]])/(Sqrt[2]*c^(1/4)*Sqrt[c*d^2 + a*e^2]*Sqrt[Sqrt[c]*d - Sqrt[c*d^2 + a*e^2]]) - (e*ArcTanh[(Sqrt[Sq
rt[c]*d + Sqrt[c*d^2 + a*e^2]] + Sqrt[2]*c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d - Sqrt[c*d^2 + a*e^2]]])/(Sqrt[
2]*c^(1/4)*Sqrt[c*d^2 + a*e^2]*Sqrt[Sqrt[c]*d - Sqrt[c*d^2 + a*e^2]]) - (e*Log[Sqrt[c*d^2 + a*e^2] - Sqrt[2]*c
^(1/4)*Sqrt[Sqrt[c]*d + Sqrt[c*d^2 + a*e^2]]*Sqrt[d + e*x] + Sqrt[c]*(d + e*x)])/(2*Sqrt[2]*c^(1/4)*Sqrt[c*d^2
+ a*e^2]*Sqrt[Sqrt[c]*d + Sqrt[c*d^2 + a*e^2]]) + (e*Log[Sqrt[c*d^2 + a*e^2] + Sqrt[2]*c^(1/4)*Sqrt[Sqrt[c]*d
+ Sqrt[c*d^2 + a*e^2]]*Sqrt[d + e*x] + Sqrt[c]*(d + e*x)])/(2*Sqrt[2]*c^(1/4)*Sqrt[c*d^2 + a*e^2]*Sqrt[Sqrt[c
]*d + Sqrt[c*d^2 + a*e^2]])

________________________________________________________________________________________

Rubi [A]  time = 0.446833, antiderivative size = 538, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 6, integrand size = 19, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.316, Rules used = {708, 1094, 634, 618, 206, 628} $-\frac{e \log \left (-\sqrt{2} \sqrt [4]{c} \sqrt{d+e x} \sqrt{\sqrt{a e^2+c d^2}+\sqrt{c} d}+\sqrt{a e^2+c d^2}+\sqrt{c} (d+e x)\right )}{2 \sqrt{2} \sqrt [4]{c} \sqrt{a e^2+c d^2} \sqrt{\sqrt{a e^2+c d^2}+\sqrt{c} d}}+\frac{e \log \left (\sqrt{2} \sqrt [4]{c} \sqrt{d+e x} \sqrt{\sqrt{a e^2+c d^2}+\sqrt{c} d}+\sqrt{a e^2+c d^2}+\sqrt{c} (d+e x)\right )}{2 \sqrt{2} \sqrt [4]{c} \sqrt{a e^2+c d^2} \sqrt{\sqrt{a e^2+c d^2}+\sqrt{c} d}}+\frac{e \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a e^2+c d^2}+\sqrt{c} d}-\sqrt{2} \sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a e^2+c d^2}}}\right )}{\sqrt{2} \sqrt [4]{c} \sqrt{a e^2+c d^2} \sqrt{\sqrt{c} d-\sqrt{a e^2+c d^2}}}-\frac{e \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a e^2+c d^2}+\sqrt{c} d}+\sqrt{2} \sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a e^2+c d^2}}}\right )}{\sqrt{2} \sqrt [4]{c} \sqrt{a e^2+c d^2} \sqrt{\sqrt{c} d-\sqrt{a e^2+c d^2}}}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/(Sqrt[d + e*x]*(a + c*x^2)),x]

[Out]

(e*ArcTanh[(Sqrt[Sqrt[c]*d + Sqrt[c*d^2 + a*e^2]] - Sqrt[2]*c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d - Sqrt[c*d^2
+ a*e^2]]])/(Sqrt[2]*c^(1/4)*Sqrt[c*d^2 + a*e^2]*Sqrt[Sqrt[c]*d - Sqrt[c*d^2 + a*e^2]]) - (e*ArcTanh[(Sqrt[Sq
rt[c]*d + Sqrt[c*d^2 + a*e^2]] + Sqrt[2]*c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d - Sqrt[c*d^2 + a*e^2]]])/(Sqrt[
2]*c^(1/4)*Sqrt[c*d^2 + a*e^2]*Sqrt[Sqrt[c]*d - Sqrt[c*d^2 + a*e^2]]) - (e*Log[Sqrt[c*d^2 + a*e^2] - Sqrt[2]*c
^(1/4)*Sqrt[Sqrt[c]*d + Sqrt[c*d^2 + a*e^2]]*Sqrt[d + e*x] + Sqrt[c]*(d + e*x)])/(2*Sqrt[2]*c^(1/4)*Sqrt[c*d^2
+ a*e^2]*Sqrt[Sqrt[c]*d + Sqrt[c*d^2 + a*e^2]]) + (e*Log[Sqrt[c*d^2 + a*e^2] + Sqrt[2]*c^(1/4)*Sqrt[Sqrt[c]*d
+ Sqrt[c*d^2 + a*e^2]]*Sqrt[d + e*x] + Sqrt[c]*(d + e*x)])/(2*Sqrt[2]*c^(1/4)*Sqrt[c*d^2 + a*e^2]*Sqrt[Sqrt[c
]*d + Sqrt[c*d^2 + a*e^2]])

Rule 708

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2*e, Subst[Int[1/(c*d^2 + a*e^2 - 2*c
*d*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0]

Rule 1094

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}
, Dist[1/(2*c*q*r), Int[(r - x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(r + x)/(q + r*x + x^2), x], x
]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[b^2 - 4*a*c]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{d+e x} \left (a+c x^2\right )} \, dx &=(2 e) \operatorname{Subst}\left (\int \frac{1}{c d^2+a e^2-2 c d x^2+c x^4} \, dx,x,\sqrt{d+e x}\right )\\ &=\frac{e \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}}}{\sqrt [4]{c}}-x}{\frac{\sqrt{c d^2+a e^2}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt{d+e x}\right )}{\sqrt{2} \sqrt [4]{c} \sqrt{c d^2+a e^2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}}}+\frac{e \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}}}{\sqrt [4]{c}}+x}{\frac{\sqrt{c d^2+a e^2}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt{d+e x}\right )}{\sqrt{2} \sqrt [4]{c} \sqrt{c d^2+a e^2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}}}\\ &=\frac{e \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{c d^2+a e^2}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt{d+e x}\right )}{2 \sqrt{c} \sqrt{c d^2+a e^2}}+\frac{e \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{c d^2+a e^2}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt{d+e x}\right )}{2 \sqrt{c} \sqrt{c d^2+a e^2}}-\frac{e \operatorname{Subst}\left (\int \frac{-\frac{\sqrt{2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}}}{\sqrt [4]{c}}+2 x}{\frac{\sqrt{c d^2+a e^2}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt{d+e x}\right )}{2 \sqrt{2} \sqrt [4]{c} \sqrt{c d^2+a e^2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}}}+\frac{e \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}}}{\sqrt [4]{c}}+2 x}{\frac{\sqrt{c d^2+a e^2}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt{d+e x}\right )}{2 \sqrt{2} \sqrt [4]{c} \sqrt{c d^2+a e^2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}}}\\ &=-\frac{e \log \left (\sqrt{c d^2+a e^2}-\sqrt{2} \sqrt [4]{c} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}} \sqrt{d+e x}+\sqrt{c} (d+e x)\right )}{2 \sqrt{2} \sqrt [4]{c} \sqrt{c d^2+a e^2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}}}+\frac{e \log \left (\sqrt{c d^2+a e^2}+\sqrt{2} \sqrt [4]{c} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}} \sqrt{d+e x}+\sqrt{c} (d+e x)\right )}{2 \sqrt{2} \sqrt [4]{c} \sqrt{c d^2+a e^2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}}}-\frac{e \operatorname{Subst}\left (\int \frac{1}{2 \left (d-\frac{\sqrt{c d^2+a e^2}}{\sqrt{c}}\right )-x^2} \, dx,x,-\frac{\sqrt{2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}}}{\sqrt [4]{c}}+2 \sqrt{d+e x}\right )}{\sqrt{c} \sqrt{c d^2+a e^2}}-\frac{e \operatorname{Subst}\left (\int \frac{1}{2 \left (d-\frac{\sqrt{c d^2+a e^2}}{\sqrt{c}}\right )-x^2} \, dx,x,\frac{\sqrt{2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}}}{\sqrt [4]{c}}+2 \sqrt{d+e x}\right )}{\sqrt{c} \sqrt{c d^2+a e^2}}\\ &=\frac{e \tanh ^{-1}\left (\frac{\sqrt [4]{c} \left (\frac{\sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}}}{\sqrt [4]{c}}-\sqrt{2} \sqrt{d+e x}\right )}{\sqrt{\sqrt{c} d-\sqrt{c d^2+a e^2}}}\right )}{\sqrt{2} \sqrt [4]{c} \sqrt{c d^2+a e^2} \sqrt{\sqrt{c} d-\sqrt{c d^2+a e^2}}}-\frac{e \tanh ^{-1}\left (\frac{\sqrt [4]{c} \left (\frac{\sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}}}{\sqrt [4]{c}}+\sqrt{2} \sqrt{d+e x}\right )}{\sqrt{\sqrt{c} d-\sqrt{c d^2+a e^2}}}\right )}{\sqrt{2} \sqrt [4]{c} \sqrt{c d^2+a e^2} \sqrt{\sqrt{c} d-\sqrt{c d^2+a e^2}}}-\frac{e \log \left (\sqrt{c d^2+a e^2}-\sqrt{2} \sqrt [4]{c} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}} \sqrt{d+e x}+\sqrt{c} (d+e x)\right )}{2 \sqrt{2} \sqrt [4]{c} \sqrt{c d^2+a e^2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}}}+\frac{e \log \left (\sqrt{c d^2+a e^2}+\sqrt{2} \sqrt [4]{c} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}} \sqrt{d+e x}+\sqrt{c} (d+e x)\right )}{2 \sqrt{2} \sqrt [4]{c} \sqrt{c d^2+a e^2} \sqrt{\sqrt{c} d+\sqrt{c d^2+a e^2}}}\\ \end{align*}

Mathematica [A]  time = 0.137005, size = 135, normalized size = 0.25 $\frac{\frac{\tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{-a} e}}\right )}{\sqrt{\sqrt{c} d-\sqrt{-a} e}}-\frac{\tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{-a} e+\sqrt{c} d}}\right )}{\sqrt{\sqrt{-a} e+\sqrt{c} d}}}{\sqrt{-a} \sqrt [4]{c}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/(Sqrt[d + e*x]*(a + c*x^2)),x]

[Out]

(ArcTanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d - Sqrt[-a]*e]]/Sqrt[Sqrt[c]*d - Sqrt[-a]*e] - ArcTanh[(c^(1/4)
*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d + Sqrt[-a]*e]]/Sqrt[Sqrt[c]*d + Sqrt[-a]*e])/(Sqrt[-a]*c^(1/4))

________________________________________________________________________________________

Maple [B]  time = 0.24, size = 1548, normalized size = 2.9 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x^2+a)/(e*x+d)^(1/2),x)

[Out]

1/4/(a*e^2+c*d^2)^(1/2)/a/e*ln((e*x+d)*c^(1/2)-(e*x+d)^(1/2)*(2*(c*(a*e^2+c*d^2))^(1/2)+2*c*d)^(1/2)+(a*e^2+c*
d^2)^(1/2))*(2*(a*c*e^2+c^2*d^2)^(1/2)+2*c*d)^(1/2)*d-1/4/(a*e^2+c*d^2)^(1/2)/c/a/e*ln((e*x+d)*c^(1/2)-(e*x+d)
^(1/2)*(2*(c*(a*e^2+c*d^2))^(1/2)+2*c*d)^(1/2)+(a*e^2+c*d^2)^(1/2))*(2*(a*c*e^2+c^2*d^2)^(1/2)+2*c*d)^(1/2)*(a
*c*e^2+c^2*d^2)^(1/2)+2*e/(a*e^2+c*d^2)^(1/2)/(4*(a*e^2+c*d^2)^(1/2)*c^(1/2)-2*(c*(a*e^2+c*d^2))^(1/2)-2*c*d)^
(1/2)*arctan((2*c^(1/2)*(e*x+d)^(1/2)-(2*(c*(a*e^2+c*d^2))^(1/2)+2*c*d)^(1/2))/(4*(a*e^2+c*d^2)^(1/2)*c^(1/2)-
2*(c*(a*e^2+c*d^2))^(1/2)-2*c*d)^(1/2))+1/2/(a*e^2+c*d^2)^(1/2)/a/e/(4*(a*e^2+c*d^2)^(1/2)*c^(1/2)-2*(c*(a*e^2
+c*d^2))^(1/2)-2*c*d)^(1/2)*arctan((2*c^(1/2)*(e*x+d)^(1/2)-(2*(c*(a*e^2+c*d^2))^(1/2)+2*c*d)^(1/2))/(4*(a*e^2
+c*d^2)^(1/2)*c^(1/2)-2*(c*(a*e^2+c*d^2))^(1/2)-2*c*d)^(1/2))*(2*(c*(a*e^2+c*d^2))^(1/2)+2*c*d)^(1/2)*(2*(a*c*
e^2+c^2*d^2)^(1/2)+2*c*d)^(1/2)*d-1/2/(a*e^2+c*d^2)^(1/2)/c/a/e/(4*(a*e^2+c*d^2)^(1/2)*c^(1/2)-2*(c*(a*e^2+c*d
^2))^(1/2)-2*c*d)^(1/2)*arctan((2*c^(1/2)*(e*x+d)^(1/2)-(2*(c*(a*e^2+c*d^2))^(1/2)+2*c*d)^(1/2))/(4*(a*e^2+c*d
^2)^(1/2)*c^(1/2)-2*(c*(a*e^2+c*d^2))^(1/2)-2*c*d)^(1/2))*(2*(c*(a*e^2+c*d^2))^(1/2)+2*c*d)^(1/2)*(2*(a*c*e^2+
c^2*d^2)^(1/2)+2*c*d)^(1/2)*(a*c*e^2+c^2*d^2)^(1/2)-1/4/(a*e^2+c*d^2)^(1/2)/a/e*ln((e*x+d)*c^(1/2)+(e*x+d)^(1/
2)*(2*(c*(a*e^2+c*d^2))^(1/2)+2*c*d)^(1/2)+(a*e^2+c*d^2)^(1/2))*(2*(a*c*e^2+c^2*d^2)^(1/2)+2*c*d)^(1/2)*d+1/4/
(a*e^2+c*d^2)^(1/2)/c/a/e*ln((e*x+d)*c^(1/2)+(e*x+d)^(1/2)*(2*(c*(a*e^2+c*d^2))^(1/2)+2*c*d)^(1/2)+(a*e^2+c*d^
2)^(1/2))*(2*(a*c*e^2+c^2*d^2)^(1/2)+2*c*d)^(1/2)*(a*c*e^2+c^2*d^2)^(1/2)+2*e/(a*e^2+c*d^2)^(1/2)/(4*(a*e^2+c*
d^2)^(1/2)*c^(1/2)-2*(c*(a*e^2+c*d^2))^(1/2)-2*c*d)^(1/2)*arctan((2*c^(1/2)*(e*x+d)^(1/2)+(2*(c*(a*e^2+c*d^2))
^(1/2)+2*c*d)^(1/2))/(4*(a*e^2+c*d^2)^(1/2)*c^(1/2)-2*(c*(a*e^2+c*d^2))^(1/2)-2*c*d)^(1/2))+1/2/(a*e^2+c*d^2)^
(1/2)/a/e/(4*(a*e^2+c*d^2)^(1/2)*c^(1/2)-2*(c*(a*e^2+c*d^2))^(1/2)-2*c*d)^(1/2)*arctan((2*c^(1/2)*(e*x+d)^(1/2
)+(2*(c*(a*e^2+c*d^2))^(1/2)+2*c*d)^(1/2))/(4*(a*e^2+c*d^2)^(1/2)*c^(1/2)-2*(c*(a*e^2+c*d^2))^(1/2)-2*c*d)^(1/
2))*(2*(c*(a*e^2+c*d^2))^(1/2)+2*c*d)^(1/2)*(2*(a*c*e^2+c^2*d^2)^(1/2)+2*c*d)^(1/2)*d-1/2/(a*e^2+c*d^2)^(1/2)/
c/a/e/(4*(a*e^2+c*d^2)^(1/2)*c^(1/2)-2*(c*(a*e^2+c*d^2))^(1/2)-2*c*d)^(1/2)*arctan((2*c^(1/2)*(e*x+d)^(1/2)+(2
*(c*(a*e^2+c*d^2))^(1/2)+2*c*d)^(1/2))/(4*(a*e^2+c*d^2)^(1/2)*c^(1/2)-2*(c*(a*e^2+c*d^2))^(1/2)-2*c*d)^(1/2))*
(2*(c*(a*e^2+c*d^2))^(1/2)+2*c*d)^(1/2)*(2*(a*c*e^2+c^2*d^2)^(1/2)+2*c*d)^(1/2)*(a*c*e^2+c^2*d^2)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{2} + a\right )} \sqrt{e x + d}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^2+a)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((c*x^2 + a)*sqrt(e*x + d)), x)

________________________________________________________________________________________

Fricas [B]  time = 2.04934, size = 1808, normalized size = 3.36 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^2+a)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(-((a*c*d^2 + a^2*e^2)*sqrt(-e^2/(a*c^3*d^4 + 2*a^2*c^2*d^2*e^2 + a^3*c*e^4)) + d)/(a*c*d^2 + a^2*e^2)
)*log(sqrt(e*x + d)*e + (a*e^2 + (a*c^2*d^3 + a^2*c*d*e^2)*sqrt(-e^2/(a*c^3*d^4 + 2*a^2*c^2*d^2*e^2 + a^3*c*e^
4)))*sqrt(-((a*c*d^2 + a^2*e^2)*sqrt(-e^2/(a*c^3*d^4 + 2*a^2*c^2*d^2*e^2 + a^3*c*e^4)) + d)/(a*c*d^2 + a^2*e^2
))) - 1/2*sqrt(-((a*c*d^2 + a^2*e^2)*sqrt(-e^2/(a*c^3*d^4 + 2*a^2*c^2*d^2*e^2 + a^3*c*e^4)) + d)/(a*c*d^2 + a^
2*e^2))*log(sqrt(e*x + d)*e - (a*e^2 + (a*c^2*d^3 + a^2*c*d*e^2)*sqrt(-e^2/(a*c^3*d^4 + 2*a^2*c^2*d^2*e^2 + a^
3*c*e^4)))*sqrt(-((a*c*d^2 + a^2*e^2)*sqrt(-e^2/(a*c^3*d^4 + 2*a^2*c^2*d^2*e^2 + a^3*c*e^4)) + d)/(a*c*d^2 + a
^2*e^2))) + 1/2*sqrt(((a*c*d^2 + a^2*e^2)*sqrt(-e^2/(a*c^3*d^4 + 2*a^2*c^2*d^2*e^2 + a^3*c*e^4)) - d)/(a*c*d^2
+ a^2*e^2))*log(sqrt(e*x + d)*e + (a*e^2 - (a*c^2*d^3 + a^2*c*d*e^2)*sqrt(-e^2/(a*c^3*d^4 + 2*a^2*c^2*d^2*e^2
+ a^3*c*e^4)))*sqrt(((a*c*d^2 + a^2*e^2)*sqrt(-e^2/(a*c^3*d^4 + 2*a^2*c^2*d^2*e^2 + a^3*c*e^4)) - d)/(a*c*d^2
+ a^2*e^2))) - 1/2*sqrt(((a*c*d^2 + a^2*e^2)*sqrt(-e^2/(a*c^3*d^4 + 2*a^2*c^2*d^2*e^2 + a^3*c*e^4)) - d)/(a*c
*d^2 + a^2*e^2))*log(sqrt(e*x + d)*e - (a*e^2 - (a*c^2*d^3 + a^2*c*d*e^2)*sqrt(-e^2/(a*c^3*d^4 + 2*a^2*c^2*d^2
*e^2 + a^3*c*e^4)))*sqrt(((a*c*d^2 + a^2*e^2)*sqrt(-e^2/(a*c^3*d^4 + 2*a^2*c^2*d^2*e^2 + a^3*c*e^4)) - d)/(a*c
*d^2 + a^2*e^2)))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + c x^{2}\right ) \sqrt{d + e x}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x**2+a)/(e*x+d)**(1/2),x)

[Out]

Integral(1/((a + c*x**2)*sqrt(d + e*x)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^2+a)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError