### 3.523 $$\int \frac{1}{(d+e x) (a+c x^2)^4} \, dx$$

Optimal. Leaf size=295 $\frac{c d x \left (19 a^2 e^4+16 a c d^2 e^2+5 c^2 d^4\right )+8 a^3 e^5}{16 a^3 \left (a+c x^2\right ) \left (a e^2+c d^2\right )^3}+\frac{\sqrt{c} d \left (35 a^2 c d^2 e^4+35 a^3 e^6+21 a c^2 d^4 e^2+5 c^3 d^6\right ) \tan ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a}}\right )}{16 a^{7/2} \left (a e^2+c d^2\right )^4}+\frac{6 a^2 e^3+c d x \left (11 a e^2+5 c d^2\right )}{24 a^2 \left (a+c x^2\right )^2 \left (a e^2+c d^2\right )^2}+\frac{a e+c d x}{6 a \left (a+c x^2\right )^3 \left (a e^2+c d^2\right )}-\frac{e^7 \log \left (a+c x^2\right )}{2 \left (a e^2+c d^2\right )^4}+\frac{e^7 \log (d+e x)}{\left (a e^2+c d^2\right )^4}$

[Out]

(a*e + c*d*x)/(6*a*(c*d^2 + a*e^2)*(a + c*x^2)^3) + (6*a^2*e^3 + c*d*(5*c*d^2 + 11*a*e^2)*x)/(24*a^2*(c*d^2 +
a*e^2)^2*(a + c*x^2)^2) + (8*a^3*e^5 + c*d*(5*c^2*d^4 + 16*a*c*d^2*e^2 + 19*a^2*e^4)*x)/(16*a^3*(c*d^2 + a*e^2
)^3*(a + c*x^2)) + (Sqrt[c]*d*(5*c^3*d^6 + 21*a*c^2*d^4*e^2 + 35*a^2*c*d^2*e^4 + 35*a^3*e^6)*ArcTan[(Sqrt[c]*x
)/Sqrt[a]])/(16*a^(7/2)*(c*d^2 + a*e^2)^4) + (e^7*Log[d + e*x])/(c*d^2 + a*e^2)^4 - (e^7*Log[a + c*x^2])/(2*(c
*d^2 + a*e^2)^4)

________________________________________________________________________________________

Rubi [A]  time = 0.38205, antiderivative size = 295, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 17, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.353, Rules used = {741, 823, 801, 635, 205, 260} $\frac{c d x \left (19 a^2 e^4+16 a c d^2 e^2+5 c^2 d^4\right )+8 a^3 e^5}{16 a^3 \left (a+c x^2\right ) \left (a e^2+c d^2\right )^3}+\frac{\sqrt{c} d \left (35 a^2 c d^2 e^4+35 a^3 e^6+21 a c^2 d^4 e^2+5 c^3 d^6\right ) \tan ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a}}\right )}{16 a^{7/2} \left (a e^2+c d^2\right )^4}+\frac{6 a^2 e^3+c d x \left (11 a e^2+5 c d^2\right )}{24 a^2 \left (a+c x^2\right )^2 \left (a e^2+c d^2\right )^2}+\frac{a e+c d x}{6 a \left (a+c x^2\right )^3 \left (a e^2+c d^2\right )}-\frac{e^7 \log \left (a+c x^2\right )}{2 \left (a e^2+c d^2\right )^4}+\frac{e^7 \log (d+e x)}{\left (a e^2+c d^2\right )^4}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((d + e*x)*(a + c*x^2)^4),x]

[Out]

(a*e + c*d*x)/(6*a*(c*d^2 + a*e^2)*(a + c*x^2)^3) + (6*a^2*e^3 + c*d*(5*c*d^2 + 11*a*e^2)*x)/(24*a^2*(c*d^2 +
a*e^2)^2*(a + c*x^2)^2) + (8*a^3*e^5 + c*d*(5*c^2*d^4 + 16*a*c*d^2*e^2 + 19*a^2*e^4)*x)/(16*a^3*(c*d^2 + a*e^2
)^3*(a + c*x^2)) + (Sqrt[c]*d*(5*c^3*d^6 + 21*a*c^2*d^4*e^2 + 35*a^2*c*d^2*e^4 + 35*a^3*e^6)*ArcTan[(Sqrt[c]*x
)/Sqrt[a]])/(16*a^(7/2)*(c*d^2 + a*e^2)^4) + (e^7*Log[d + e*x])/(c*d^2 + a*e^2)^4 - (e^7*Log[a + c*x^2])/(2*(c
*d^2 + a*e^2)^4)

Rule 741

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(m + 1)*(a*e + c*d*x)*(
a + c*x^2)^(p + 1))/(2*a*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[1/(2*a*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^m*
Simp[c*d^2*(2*p + 3) + a*e^2*(m + 2*p + 3) + c*e*d*(m + 2*p + 4)*x, x]*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a
, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 823

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(
m + 1)*(f*a*c*e - a*g*c*d + c*(c*d*f + a*e*g)*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), x] + Di
st[1/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Simp[f*(c^2*d^2*(2*p + 3) + a*c*e^2*
(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f + a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x]
&& NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 801

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(
(d + e*x)^m*(f + g*x))/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && Integer
Q[m]

Rule 635

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[-(a*c)]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rubi steps

\begin{align*} \int \frac{1}{(d+e x) \left (a+c x^2\right )^4} \, dx &=\frac{a e+c d x}{6 a \left (c d^2+a e^2\right ) \left (a+c x^2\right )^3}-\frac{\int \frac{-5 c d^2-6 a e^2-5 c d e x}{(d+e x) \left (a+c x^2\right )^3} \, dx}{6 a \left (c d^2+a e^2\right )}\\ &=\frac{a e+c d x}{6 a \left (c d^2+a e^2\right ) \left (a+c x^2\right )^3}+\frac{6 a^2 e^3+c d \left (5 c d^2+11 a e^2\right ) x}{24 a^2 \left (c d^2+a e^2\right )^2 \left (a+c x^2\right )^2}+\frac{\int \frac{3 c \left (5 c^2 d^4+11 a c d^2 e^2+8 a^2 e^4\right )+3 c^2 d e \left (5 c d^2+11 a e^2\right ) x}{(d+e x) \left (a+c x^2\right )^2} \, dx}{24 a^2 c \left (c d^2+a e^2\right )^2}\\ &=\frac{a e+c d x}{6 a \left (c d^2+a e^2\right ) \left (a+c x^2\right )^3}+\frac{6 a^2 e^3+c d \left (5 c d^2+11 a e^2\right ) x}{24 a^2 \left (c d^2+a e^2\right )^2 \left (a+c x^2\right )^2}+\frac{8 a^3 e^5+c d \left (5 c^2 d^4+16 a c d^2 e^2+19 a^2 e^4\right ) x}{16 a^3 \left (c d^2+a e^2\right )^3 \left (a+c x^2\right )}-\frac{\int \frac{-3 c^2 \left (5 c^3 d^6+16 a c^2 d^4 e^2+19 a^2 c d^2 e^4+16 a^3 e^6\right )-3 c^3 d e \left (5 c^2 d^4+16 a c d^2 e^2+19 a^2 e^4\right ) x}{(d+e x) \left (a+c x^2\right )} \, dx}{48 a^3 c^2 \left (c d^2+a e^2\right )^3}\\ &=\frac{a e+c d x}{6 a \left (c d^2+a e^2\right ) \left (a+c x^2\right )^3}+\frac{6 a^2 e^3+c d \left (5 c d^2+11 a e^2\right ) x}{24 a^2 \left (c d^2+a e^2\right )^2 \left (a+c x^2\right )^2}+\frac{8 a^3 e^5+c d \left (5 c^2 d^4+16 a c d^2 e^2+19 a^2 e^4\right ) x}{16 a^3 \left (c d^2+a e^2\right )^3 \left (a+c x^2\right )}-\frac{\int \left (-\frac{48 a^3 c^2 e^8}{\left (c d^2+a e^2\right ) (d+e x)}-\frac{3 c^3 \left (5 c^3 d^7+21 a c^2 d^5 e^2+35 a^2 c d^3 e^4+35 a^3 d e^6-16 a^3 e^7 x\right )}{\left (c d^2+a e^2\right ) \left (a+c x^2\right )}\right ) \, dx}{48 a^3 c^2 \left (c d^2+a e^2\right )^3}\\ &=\frac{a e+c d x}{6 a \left (c d^2+a e^2\right ) \left (a+c x^2\right )^3}+\frac{6 a^2 e^3+c d \left (5 c d^2+11 a e^2\right ) x}{24 a^2 \left (c d^2+a e^2\right )^2 \left (a+c x^2\right )^2}+\frac{8 a^3 e^5+c d \left (5 c^2 d^4+16 a c d^2 e^2+19 a^2 e^4\right ) x}{16 a^3 \left (c d^2+a e^2\right )^3 \left (a+c x^2\right )}+\frac{e^7 \log (d+e x)}{\left (c d^2+a e^2\right )^4}+\frac{c \int \frac{5 c^3 d^7+21 a c^2 d^5 e^2+35 a^2 c d^3 e^4+35 a^3 d e^6-16 a^3 e^7 x}{a+c x^2} \, dx}{16 a^3 \left (c d^2+a e^2\right )^4}\\ &=\frac{a e+c d x}{6 a \left (c d^2+a e^2\right ) \left (a+c x^2\right )^3}+\frac{6 a^2 e^3+c d \left (5 c d^2+11 a e^2\right ) x}{24 a^2 \left (c d^2+a e^2\right )^2 \left (a+c x^2\right )^2}+\frac{8 a^3 e^5+c d \left (5 c^2 d^4+16 a c d^2 e^2+19 a^2 e^4\right ) x}{16 a^3 \left (c d^2+a e^2\right )^3 \left (a+c x^2\right )}+\frac{e^7 \log (d+e x)}{\left (c d^2+a e^2\right )^4}-\frac{\left (c e^7\right ) \int \frac{x}{a+c x^2} \, dx}{\left (c d^2+a e^2\right )^4}+\frac{\left (c d \left (5 c^3 d^6+21 a c^2 d^4 e^2+35 a^2 c d^2 e^4+35 a^3 e^6\right )\right ) \int \frac{1}{a+c x^2} \, dx}{16 a^3 \left (c d^2+a e^2\right )^4}\\ &=\frac{a e+c d x}{6 a \left (c d^2+a e^2\right ) \left (a+c x^2\right )^3}+\frac{6 a^2 e^3+c d \left (5 c d^2+11 a e^2\right ) x}{24 a^2 \left (c d^2+a e^2\right )^2 \left (a+c x^2\right )^2}+\frac{8 a^3 e^5+c d \left (5 c^2 d^4+16 a c d^2 e^2+19 a^2 e^4\right ) x}{16 a^3 \left (c d^2+a e^2\right )^3 \left (a+c x^2\right )}+\frac{\sqrt{c} d \left (5 c^3 d^6+21 a c^2 d^4 e^2+35 a^2 c d^2 e^4+35 a^3 e^6\right ) \tan ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a}}\right )}{16 a^{7/2} \left (c d^2+a e^2\right )^4}+\frac{e^7 \log (d+e x)}{\left (c d^2+a e^2\right )^4}-\frac{e^7 \log \left (a+c x^2\right )}{2 \left (c d^2+a e^2\right )^4}\\ \end{align*}

Mathematica [A]  time = 0.224831, size = 265, normalized size = 0.9 $\frac{\frac{3 \left (a e^2+c d^2\right ) \left (19 a^2 c d e^4 x+8 a^3 e^5+16 a c^2 d^3 e^2 x+5 c^3 d^5 x\right )}{a^3 \left (a+c x^2\right )}+\frac{2 \left (a e^2+c d^2\right )^2 \left (6 a^2 e^3+11 a c d e^2 x+5 c^2 d^3 x\right )}{a^2 \left (a+c x^2\right )^2}+\frac{3 \sqrt{c} d \left (35 a^2 c d^2 e^4+35 a^3 e^6+21 a c^2 d^4 e^2+5 c^3 d^6\right ) \tan ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a}}\right )}{a^{7/2}}+\frac{8 \left (a e^2+c d^2\right )^3 (a e+c d x)}{a \left (a+c x^2\right )^3}-24 e^7 \log \left (a+c x^2\right )+48 e^7 \log (d+e x)}{48 \left (a e^2+c d^2\right )^4}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((d + e*x)*(a + c*x^2)^4),x]

[Out]

((8*(c*d^2 + a*e^2)^3*(a*e + c*d*x))/(a*(a + c*x^2)^3) + (2*(c*d^2 + a*e^2)^2*(6*a^2*e^3 + 5*c^2*d^3*x + 11*a*
c*d*e^2*x))/(a^2*(a + c*x^2)^2) + (3*(c*d^2 + a*e^2)*(8*a^3*e^5 + 5*c^3*d^5*x + 16*a*c^2*d^3*e^2*x + 19*a^2*c*
d*e^4*x))/(a^3*(a + c*x^2)) + (3*Sqrt[c]*d*(5*c^3*d^6 + 21*a*c^2*d^4*e^2 + 35*a^2*c*d^2*e^4 + 35*a^3*e^6)*ArcT
an[(Sqrt[c]*x)/Sqrt[a]])/a^(7/2) + 48*e^7*Log[d + e*x] - 24*e^7*Log[a + c*x^2])/(48*(c*d^2 + a*e^2)^4)

________________________________________________________________________________________

Maple [B]  time = 0.062, size = 941, normalized size = 3.2 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)/(c*x^2+a)^4,x)

[Out]

3/2*c^2/(a*e^2+c*d^2)^4/(c*x^2+a)^3*x^2*a*d^2*e^5+61/16*c^2/(a*e^2+c*d^2)^4/(c*x^2+a)^3*d^3*a*x*e^4+29/16*c/(a
*e^2+c*d^2)^4/(c*x^2+a)^3*d*a^2*x*e^6+21/16*c^3/(a*e^2+c*d^2)^4/a^2/(a*c)^(1/2)*arctan(x*c/(a*c)^(1/2))*d^5*e^
2+35/16*c^2/(a*e^2+c*d^2)^4/a/(a*c)^(1/2)*arctan(x*c/(a*c)^(1/2))*d^3*e^4+1/6*c^3/(a*e^2+c*d^2)^4/(c*x^2+a)^3*
e*d^6+11/12/(a*e^2+c*d^2)^4/(c*x^2+a)^3*a^3*e^7+35/16*c^4/(a*e^2+c*d^2)^4/(c*x^2+a)^3*d^3/a*x^5*e^4+21/16*c^5/
(a*e^2+c*d^2)^4/(c*x^2+a)^3*d^5/a^2*x^5*e^2+17/6*c^2/(a*e^2+c*d^2)^4/(c*x^2+a)^3*d*a*x^3*e^6+7/2*c^4/(a*e^2+c*
d^2)^4/(c*x^2+a)^3*d^5/a*x^3*e^2+35/16*c/(a*e^2+c*d^2)^4/(a*c)^(1/2)*arctan(x*c/(a*c)^(1/2))*d*e^6+5/16*c^4/(a
*e^2+c*d^2)^4/a^3/(a*c)^(1/2)*arctan(x*c/(a*c)^(1/2))*d^7+5/6*c^5/(a*e^2+c*d^2)^4/(c*x^2+a)^3*d^7/a^2*x^3+1/4*
c^3/(a*e^2+c*d^2)^4/(c*x^2+a)^3*x^2*d^4*e^3+43/16*c^3/(a*e^2+c*d^2)^4/(c*x^2+a)^3*d^5*x*e^2+11/16*c^4/(a*e^2+c
*d^2)^4/(c*x^2+a)^3*d^7/a*x+3/4*c^2/(a*e^2+c*d^2)^4/(c*x^2+a)^3*e^3*d^4*a+19/16*c^3/(a*e^2+c*d^2)^4/(c*x^2+a)^
3*d*x^5*e^6+5/16*c^6/(a*e^2+c*d^2)^4/(c*x^2+a)^3*d^7/a^3*x^5+1/2*c^2/(a*e^2+c*d^2)^4/(c*x^2+a)^3*x^4*a*e^7+1/2
*c^3/(a*e^2+c*d^2)^4/(c*x^2+a)^3*x^4*d^2*e^5+11/2*c^3/(a*e^2+c*d^2)^4/(c*x^2+a)^3*d^3*x^3*e^4+5/4*c/(a*e^2+c*d
^2)^4/(c*x^2+a)^3*x^2*a^2*e^7+3/2*c/(a*e^2+c*d^2)^4/(c*x^2+a)^3*a^2*d^2*e^5+e^7*ln(e*x+d)/(a*e^2+c*d^2)^4-1/2*
e^7*ln(c*x^2+a)/(a*e^2+c*d^2)^4

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x^2+a)^4,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 97.5941, size = 3580, normalized size = 12.14 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x^2+a)^4,x, algorithm="fricas")

[Out]

[1/96*(16*a^3*c^3*d^6*e + 72*a^4*c^2*d^4*e^3 + 144*a^5*c*d^2*e^5 + 88*a^6*e^7 + 6*(5*c^6*d^7 + 21*a*c^5*d^5*e^
2 + 35*a^2*c^4*d^3*e^4 + 19*a^3*c^3*d*e^6)*x^5 + 48*(a^3*c^3*d^2*e^5 + a^4*c^2*e^7)*x^4 + 16*(5*a*c^5*d^7 + 21
*a^2*c^4*d^5*e^2 + 33*a^3*c^3*d^3*e^4 + 17*a^4*c^2*d*e^6)*x^3 + 24*(a^3*c^3*d^4*e^3 + 6*a^4*c^2*d^2*e^5 + 5*a^
5*c*e^7)*x^2 + 3*(5*a^3*c^3*d^7 + 21*a^4*c^2*d^5*e^2 + 35*a^5*c*d^3*e^4 + 35*a^6*d*e^6 + (5*c^6*d^7 + 21*a*c^5
*d^5*e^2 + 35*a^2*c^4*d^3*e^4 + 35*a^3*c^3*d*e^6)*x^6 + 3*(5*a*c^5*d^7 + 21*a^2*c^4*d^5*e^2 + 35*a^3*c^3*d^3*e
^4 + 35*a^4*c^2*d*e^6)*x^4 + 3*(5*a^2*c^4*d^7 + 21*a^3*c^3*d^5*e^2 + 35*a^4*c^2*d^3*e^4 + 35*a^5*c*d*e^6)*x^2)
*sqrt(-c/a)*log((c*x^2 + 2*a*x*sqrt(-c/a) - a)/(c*x^2 + a)) + 6*(11*a^2*c^4*d^7 + 43*a^3*c^3*d^5*e^2 + 61*a^4*
c^2*d^3*e^4 + 29*a^5*c*d*e^6)*x - 48*(a^3*c^3*e^7*x^6 + 3*a^4*c^2*e^7*x^4 + 3*a^5*c*e^7*x^2 + a^6*e^7)*log(c*x
^2 + a) + 96*(a^3*c^3*e^7*x^6 + 3*a^4*c^2*e^7*x^4 + 3*a^5*c*e^7*x^2 + a^6*e^7)*log(e*x + d))/(a^6*c^4*d^8 + 4*
a^7*c^3*d^6*e^2 + 6*a^8*c^2*d^4*e^4 + 4*a^9*c*d^2*e^6 + a^10*e^8 + (a^3*c^7*d^8 + 4*a^4*c^6*d^6*e^2 + 6*a^5*c^
5*d^4*e^4 + 4*a^6*c^4*d^2*e^6 + a^7*c^3*e^8)*x^6 + 3*(a^4*c^6*d^8 + 4*a^5*c^5*d^6*e^2 + 6*a^6*c^4*d^4*e^4 + 4*
a^7*c^3*d^2*e^6 + a^8*c^2*e^8)*x^4 + 3*(a^5*c^5*d^8 + 4*a^6*c^4*d^6*e^2 + 6*a^7*c^3*d^4*e^4 + 4*a^8*c^2*d^2*e^
6 + a^9*c*e^8)*x^2), 1/48*(8*a^3*c^3*d^6*e + 36*a^4*c^2*d^4*e^3 + 72*a^5*c*d^2*e^5 + 44*a^6*e^7 + 3*(5*c^6*d^7
+ 21*a*c^5*d^5*e^2 + 35*a^2*c^4*d^3*e^4 + 19*a^3*c^3*d*e^6)*x^5 + 24*(a^3*c^3*d^2*e^5 + a^4*c^2*e^7)*x^4 + 8*
(5*a*c^5*d^7 + 21*a^2*c^4*d^5*e^2 + 33*a^3*c^3*d^3*e^4 + 17*a^4*c^2*d*e^6)*x^3 + 12*(a^3*c^3*d^4*e^3 + 6*a^4*c
^2*d^2*e^5 + 5*a^5*c*e^7)*x^2 + 3*(5*a^3*c^3*d^7 + 21*a^4*c^2*d^5*e^2 + 35*a^5*c*d^3*e^4 + 35*a^6*d*e^6 + (5*c
^6*d^7 + 21*a*c^5*d^5*e^2 + 35*a^2*c^4*d^3*e^4 + 35*a^3*c^3*d*e^6)*x^6 + 3*(5*a*c^5*d^7 + 21*a^2*c^4*d^5*e^2 +
35*a^3*c^3*d^3*e^4 + 35*a^4*c^2*d*e^6)*x^4 + 3*(5*a^2*c^4*d^7 + 21*a^3*c^3*d^5*e^2 + 35*a^4*c^2*d^3*e^4 + 35*
a^5*c*d*e^6)*x^2)*sqrt(c/a)*arctan(x*sqrt(c/a)) + 3*(11*a^2*c^4*d^7 + 43*a^3*c^3*d^5*e^2 + 61*a^4*c^2*d^3*e^4
+ 29*a^5*c*d*e^6)*x - 24*(a^3*c^3*e^7*x^6 + 3*a^4*c^2*e^7*x^4 + 3*a^5*c*e^7*x^2 + a^6*e^7)*log(c*x^2 + a) + 48
*(a^3*c^3*e^7*x^6 + 3*a^4*c^2*e^7*x^4 + 3*a^5*c*e^7*x^2 + a^6*e^7)*log(e*x + d))/(a^6*c^4*d^8 + 4*a^7*c^3*d^6*
e^2 + 6*a^8*c^2*d^4*e^4 + 4*a^9*c*d^2*e^6 + a^10*e^8 + (a^3*c^7*d^8 + 4*a^4*c^6*d^6*e^2 + 6*a^5*c^5*d^4*e^4 +
4*a^6*c^4*d^2*e^6 + a^7*c^3*e^8)*x^6 + 3*(a^4*c^6*d^8 + 4*a^5*c^5*d^6*e^2 + 6*a^6*c^4*d^4*e^4 + 4*a^7*c^3*d^2*
e^6 + a^8*c^2*e^8)*x^4 + 3*(a^5*c^5*d^8 + 4*a^6*c^4*d^6*e^2 + 6*a^7*c^3*d^4*e^4 + 4*a^8*c^2*d^2*e^6 + a^9*c*e^
8)*x^2)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x**2+a)**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.37122, size = 716, normalized size = 2.43 \begin{align*} -\frac{e^{7} \log \left (c x^{2} + a\right )}{2 \,{\left (c^{4} d^{8} + 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} + 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}\right )}} + \frac{e^{8} \log \left ({\left | x e + d \right |}\right )}{c^{4} d^{8} e + 4 \, a c^{3} d^{6} e^{3} + 6 \, a^{2} c^{2} d^{4} e^{5} + 4 \, a^{3} c d^{2} e^{7} + a^{4} e^{9}} + \frac{{\left (5 \, c^{4} d^{7} + 21 \, a c^{3} d^{5} e^{2} + 35 \, a^{2} c^{2} d^{3} e^{4} + 35 \, a^{3} c d e^{6}\right )} \arctan \left (\frac{c x}{\sqrt{a c}}\right )}{16 \,{\left (a^{3} c^{4} d^{8} + 4 \, a^{4} c^{3} d^{6} e^{2} + 6 \, a^{5} c^{2} d^{4} e^{4} + 4 \, a^{6} c d^{2} e^{6} + a^{7} e^{8}\right )} \sqrt{a c}} + \frac{8 \, a^{3} c^{3} d^{6} e + 36 \, a^{4} c^{2} d^{4} e^{3} + 72 \, a^{5} c d^{2} e^{5} + 44 \, a^{6} e^{7} + 3 \,{\left (5 \, c^{6} d^{7} + 21 \, a c^{5} d^{5} e^{2} + 35 \, a^{2} c^{4} d^{3} e^{4} + 19 \, a^{3} c^{3} d e^{6}\right )} x^{5} + 24 \,{\left (a^{3} c^{3} d^{2} e^{5} + a^{4} c^{2} e^{7}\right )} x^{4} + 8 \,{\left (5 \, a c^{5} d^{7} + 21 \, a^{2} c^{4} d^{5} e^{2} + 33 \, a^{3} c^{3} d^{3} e^{4} + 17 \, a^{4} c^{2} d e^{6}\right )} x^{3} + 12 \,{\left (a^{3} c^{3} d^{4} e^{3} + 6 \, a^{4} c^{2} d^{2} e^{5} + 5 \, a^{5} c e^{7}\right )} x^{2} + 3 \,{\left (11 \, a^{2} c^{4} d^{7} + 43 \, a^{3} c^{3} d^{5} e^{2} + 61 \, a^{4} c^{2} d^{3} e^{4} + 29 \, a^{5} c d e^{6}\right )} x}{48 \,{\left (c d^{2} + a e^{2}\right )}^{4}{\left (c x^{2} + a\right )}^{3} a^{3}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x^2+a)^4,x, algorithm="giac")

[Out]

-1/2*e^7*log(c*x^2 + a)/(c^4*d^8 + 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 + 4*a^3*c*d^2*e^6 + a^4*e^8) + e^8*log(
abs(x*e + d))/(c^4*d^8*e + 4*a*c^3*d^6*e^3 + 6*a^2*c^2*d^4*e^5 + 4*a^3*c*d^2*e^7 + a^4*e^9) + 1/16*(5*c^4*d^7
+ 21*a*c^3*d^5*e^2 + 35*a^2*c^2*d^3*e^4 + 35*a^3*c*d*e^6)*arctan(c*x/sqrt(a*c))/((a^3*c^4*d^8 + 4*a^4*c^3*d^6*
e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)*sqrt(a*c)) + 1/48*(8*a^3*c^3*d^6*e + 36*a^4*c^2*d^4*e^3 +
72*a^5*c*d^2*e^5 + 44*a^6*e^7 + 3*(5*c^6*d^7 + 21*a*c^5*d^5*e^2 + 35*a^2*c^4*d^3*e^4 + 19*a^3*c^3*d*e^6)*x^5
+ 24*(a^3*c^3*d^2*e^5 + a^4*c^2*e^7)*x^4 + 8*(5*a*c^5*d^7 + 21*a^2*c^4*d^5*e^2 + 33*a^3*c^3*d^3*e^4 + 17*a^4*c
^2*d*e^6)*x^3 + 12*(a^3*c^3*d^4*e^3 + 6*a^4*c^2*d^2*e^5 + 5*a^5*c*e^7)*x^2 + 3*(11*a^2*c^4*d^7 + 43*a^3*c^3*d^
5*e^2 + 61*a^4*c^2*d^3*e^4 + 29*a^5*c*d*e^6)*x)/((c*d^2 + a*e^2)^4*(c*x^2 + a)^3*a^3)