### 3.512 $$\int \frac{(d+e x)^5}{(a+c x^2)^3} \, dx$$

Optimal. Leaf size=198 $-\frac{(d+e x)^2 \left (2 a e \left (2 a e^2+c d^2\right )-c d x \left (5 a e^2+3 c d^2\right )\right )}{8 a^2 c^2 \left (a+c x^2\right )}-\frac{d e^2 x \left (7 a e^2+3 c d^2\right )}{8 a^2 c^2}+\frac{d \left (15 a^2 e^4+10 a c d^2 e^2+3 c^2 d^4\right ) \tan ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a}}\right )}{8 a^{5/2} c^{5/2}}+\frac{e^5 \log \left (a+c x^2\right )}{2 c^3}-\frac{(d+e x)^4 (a e-c d x)}{4 a c \left (a+c x^2\right )^2}$

[Out]

-(d*e^2*(3*c*d^2 + 7*a*e^2)*x)/(8*a^2*c^2) - ((a*e - c*d*x)*(d + e*x)^4)/(4*a*c*(a + c*x^2)^2) - ((d + e*x)^2*
(2*a*e*(c*d^2 + 2*a*e^2) - c*d*(3*c*d^2 + 5*a*e^2)*x))/(8*a^2*c^2*(a + c*x^2)) + (d*(3*c^2*d^4 + 10*a*c*d^2*e^
2 + 15*a^2*e^4)*ArcTan[(Sqrt[c]*x)/Sqrt[a]])/(8*a^(5/2)*c^(5/2)) + (e^5*Log[a + c*x^2])/(2*c^3)

________________________________________________________________________________________

Rubi [A]  time = 0.185442, antiderivative size = 198, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 17, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.353, Rules used = {739, 819, 774, 635, 205, 260} $-\frac{(d+e x)^2 \left (2 a e \left (2 a e^2+c d^2\right )-c d x \left (5 a e^2+3 c d^2\right )\right )}{8 a^2 c^2 \left (a+c x^2\right )}-\frac{d e^2 x \left (7 a e^2+3 c d^2\right )}{8 a^2 c^2}+\frac{d \left (15 a^2 e^4+10 a c d^2 e^2+3 c^2 d^4\right ) \tan ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a}}\right )}{8 a^{5/2} c^{5/2}}+\frac{e^5 \log \left (a+c x^2\right )}{2 c^3}-\frac{(d+e x)^4 (a e-c d x)}{4 a c \left (a+c x^2\right )^2}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^5/(a + c*x^2)^3,x]

[Out]

-(d*e^2*(3*c*d^2 + 7*a*e^2)*x)/(8*a^2*c^2) - ((a*e - c*d*x)*(d + e*x)^4)/(4*a*c*(a + c*x^2)^2) - ((d + e*x)^2*
(2*a*e*(c*d^2 + 2*a*e^2) - c*d*(3*c*d^2 + 5*a*e^2)*x))/(8*a^2*c^2*(a + c*x^2)) + (d*(3*c^2*d^4 + 10*a*c*d^2*e^
2 + 15*a^2*e^4)*ArcTan[(Sqrt[c]*x)/Sqrt[a]])/(8*a^(5/2)*c^(5/2)) + (e^5*Log[a + c*x^2])/(2*c^3)

Rule 739

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(a*e - c*d*x)*(a
+ c*x^2)^(p + 1))/(2*a*c*(p + 1)), x] + Dist[1/((p + 1)*(-2*a*c)), Int[(d + e*x)^(m - 2)*Simp[a*e^2*(m - 1) -
c*d^2*(2*p + 3) - d*c*e*(m + 2*p + 2)*x, x]*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^
2 + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 819

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x)^(
m - 1)*(a + c*x^2)^(p + 1)*(a*(e*f + d*g) - (c*d*f - a*e*g)*x))/(2*a*c*(p + 1)), x] - Dist[1/(2*a*c*(p + 1)),
Int[(d + e*x)^(m - 2)*(a + c*x^2)^(p + 1)*Simp[a*e*(e*f*(m - 1) + d*g*m) - c*d^2*f*(2*p + 3) + e*(a*e*g*m - c*
d*f*(m + 2*p + 2))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && GtQ
[m, 1] && (EqQ[d, 0] || (EqQ[m, 2] && EqQ[p, -3] && RationalQ[a, c, d, e, f, g]) ||  !ILtQ[m + 2*p + 3, 0])

Rule 774

Int[(((d_.) + (e_.)*(x_))*((f_) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(e*g*x)/c, x] + Dist[1
/c, Int[(c*d*f - a*e*g + c*(e*f + d*g)*x)/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g}, x]

Rule 635

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[-(a*c)]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rubi steps

\begin{align*} \int \frac{(d+e x)^5}{\left (a+c x^2\right )^3} \, dx &=-\frac{(a e-c d x) (d+e x)^4}{4 a c \left (a+c x^2\right )^2}+\frac{\int \frac{(d+e x)^3 \left (3 c d^2+4 a e^2-c d e x\right )}{\left (a+c x^2\right )^2} \, dx}{4 a c}\\ &=-\frac{(a e-c d x) (d+e x)^4}{4 a c \left (a+c x^2\right )^2}-\frac{(d+e x)^2 \left (2 a e \left (c d^2+2 a e^2\right )-c d \left (3 c d^2+5 a e^2\right ) x\right )}{8 a^2 c^2 \left (a+c x^2\right )}+\frac{\int \frac{(d+e x) \left (3 c^2 d^4+7 a c d^2 e^2+8 a^2 e^4-c d e \left (3 c d^2+7 a e^2\right ) x\right )}{a+c x^2} \, dx}{8 a^2 c^2}\\ &=-\frac{d e^2 \left (3 c d^2+7 a e^2\right ) x}{8 a^2 c^2}-\frac{(a e-c d x) (d+e x)^4}{4 a c \left (a+c x^2\right )^2}-\frac{(d+e x)^2 \left (2 a e \left (c d^2+2 a e^2\right )-c d \left (3 c d^2+5 a e^2\right ) x\right )}{8 a^2 c^2 \left (a+c x^2\right )}+\frac{\int \frac{a c d e^2 \left (3 c d^2+7 a e^2\right )+c d \left (3 c^2 d^4+7 a c d^2 e^2+8 a^2 e^4\right )+c \left (-c d^2 e \left (3 c d^2+7 a e^2\right )+e \left (3 c^2 d^4+7 a c d^2 e^2+8 a^2 e^4\right )\right ) x}{a+c x^2} \, dx}{8 a^2 c^3}\\ &=-\frac{d e^2 \left (3 c d^2+7 a e^2\right ) x}{8 a^2 c^2}-\frac{(a e-c d x) (d+e x)^4}{4 a c \left (a+c x^2\right )^2}-\frac{(d+e x)^2 \left (2 a e \left (c d^2+2 a e^2\right )-c d \left (3 c d^2+5 a e^2\right ) x\right )}{8 a^2 c^2 \left (a+c x^2\right )}+\frac{e^5 \int \frac{x}{a+c x^2} \, dx}{c^2}+\frac{\left (d \left (3 c^2 d^4+10 a c d^2 e^2+15 a^2 e^4\right )\right ) \int \frac{1}{a+c x^2} \, dx}{8 a^2 c^2}\\ &=-\frac{d e^2 \left (3 c d^2+7 a e^2\right ) x}{8 a^2 c^2}-\frac{(a e-c d x) (d+e x)^4}{4 a c \left (a+c x^2\right )^2}-\frac{(d+e x)^2 \left (2 a e \left (c d^2+2 a e^2\right )-c d \left (3 c d^2+5 a e^2\right ) x\right )}{8 a^2 c^2 \left (a+c x^2\right )}+\frac{d \left (3 c^2 d^4+10 a c d^2 e^2+15 a^2 e^4\right ) \tan ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a}}\right )}{8 a^{5/2} c^{5/2}}+\frac{e^5 \log \left (a+c x^2\right )}{2 c^3}\\ \end{align*}

Mathematica [A]  time = 0.152277, size = 199, normalized size = 1.01 $\frac{-\frac{2 \left (-5 a^2 c d e^3 (2 d+e x)+a^3 e^5+5 a c^2 d^3 e (d+2 e x)-c^3 d^5 x\right )}{a \left (a+c x^2\right )^2}+\frac{-5 a^2 c d e^3 (8 d+5 e x)+8 a^3 e^5+10 a c^2 d^3 e^2 x+3 c^3 d^5 x}{a^2 \left (a+c x^2\right )}+\frac{\sqrt{c} d \left (15 a^2 e^4+10 a c d^2 e^2+3 c^2 d^4\right ) \tan ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a}}\right )}{a^{5/2}}+4 e^5 \log \left (a+c x^2\right )}{8 c^3}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^5/(a + c*x^2)^3,x]

[Out]

((-2*(a^3*e^5 - c^3*d^5*x - 5*a^2*c*d*e^3*(2*d + e*x) + 5*a*c^2*d^3*e*(d + 2*e*x)))/(a*(a + c*x^2)^2) + (8*a^3
*e^5 + 3*c^3*d^5*x + 10*a*c^2*d^3*e^2*x - 5*a^2*c*d*e^3*(8*d + 5*e*x))/(a^2*(a + c*x^2)) + (Sqrt[c]*d*(3*c^2*d
^4 + 10*a*c*d^2*e^2 + 15*a^2*e^4)*ArcTan[(Sqrt[c]*x)/Sqrt[a]])/a^(5/2) + 4*e^5*Log[a + c*x^2])/(8*c^3)

________________________________________________________________________________________

Maple [A]  time = 0.059, size = 233, normalized size = 1.2 \begin{align*}{\frac{1}{ \left ( c{x}^{2}+a \right ) ^{2}} \left ( -{\frac{d \left ( 25\,{a}^{2}{e}^{4}-10\,ac{d}^{2}{e}^{2}-3\,{c}^{2}{d}^{4} \right ){x}^{3}}{8\,{a}^{2}c}}+{\frac{{e}^{3} \left ( a{e}^{2}-5\,c{d}^{2} \right ){x}^{2}}{{c}^{2}}}-{\frac{5\,d \left ( 3\,{a}^{2}{e}^{4}+2\,ac{d}^{2}{e}^{2}-{c}^{2}{d}^{4} \right ) x}{8\,a{c}^{2}}}+{\frac{e \left ( 3\,{a}^{2}{e}^{4}-10\,ac{d}^{2}{e}^{2}-5\,{c}^{2}{d}^{4} \right ) }{4\,{c}^{3}}} \right ) }+{\frac{{e}^{5}\ln \left ( c{x}^{2}+a \right ) }{2\,{c}^{3}}}+{\frac{15\,d{e}^{4}}{8\,{c}^{2}}\arctan \left ({cx{\frac{1}{\sqrt{ac}}}} \right ){\frac{1}{\sqrt{ac}}}}+{\frac{5\,{d}^{3}{e}^{2}}{4\,ac}\arctan \left ({cx{\frac{1}{\sqrt{ac}}}} \right ){\frac{1}{\sqrt{ac}}}}+{\frac{3\,{d}^{5}}{8\,{a}^{2}}\arctan \left ({cx{\frac{1}{\sqrt{ac}}}} \right ){\frac{1}{\sqrt{ac}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^5/(c*x^2+a)^3,x)

[Out]

(-1/8*d*(25*a^2*e^4-10*a*c*d^2*e^2-3*c^2*d^4)/a^2/c*x^3+e^3*(a*e^2-5*c*d^2)/c^2*x^2-5/8*d*(3*a^2*e^4+2*a*c*d^2
*e^2-c^2*d^4)/a/c^2*x+1/4*e*(3*a^2*e^4-10*a*c*d^2*e^2-5*c^2*d^4)/c^3)/(c*x^2+a)^2+1/2*e^5*ln(c*x^2+a)/c^3+15/8
/c^2/(a*c)^(1/2)*arctan(x*c/(a*c)^(1/2))*d*e^4+5/4/a/c/(a*c)^(1/2)*arctan(x*c/(a*c)^(1/2))*d^3*e^2+3/8/a^2/(a*
c)^(1/2)*arctan(x*c/(a*c)^(1/2))*d^5

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^5/(c*x^2+a)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.09844, size = 1443, normalized size = 7.29 \begin{align*} \left [-\frac{20 \, a^{3} c^{2} d^{4} e + 40 \, a^{4} c d^{2} e^{3} - 12 \, a^{5} e^{5} - 2 \,{\left (3 \, a c^{4} d^{5} + 10 \, a^{2} c^{3} d^{3} e^{2} - 25 \, a^{3} c^{2} d e^{4}\right )} x^{3} + 16 \,{\left (5 \, a^{3} c^{2} d^{2} e^{3} - a^{4} c e^{5}\right )} x^{2} +{\left (3 \, a^{2} c^{2} d^{5} + 10 \, a^{3} c d^{3} e^{2} + 15 \, a^{4} d e^{4} +{\left (3 \, c^{4} d^{5} + 10 \, a c^{3} d^{3} e^{2} + 15 \, a^{2} c^{2} d e^{4}\right )} x^{4} + 2 \,{\left (3 \, a c^{3} d^{5} + 10 \, a^{2} c^{2} d^{3} e^{2} + 15 \, a^{3} c d e^{4}\right )} x^{2}\right )} \sqrt{-a c} \log \left (\frac{c x^{2} - 2 \, \sqrt{-a c} x - a}{c x^{2} + a}\right ) - 10 \,{\left (a^{2} c^{3} d^{5} - 2 \, a^{3} c^{2} d^{3} e^{2} - 3 \, a^{4} c d e^{4}\right )} x - 8 \,{\left (a^{3} c^{2} e^{5} x^{4} + 2 \, a^{4} c e^{5} x^{2} + a^{5} e^{5}\right )} \log \left (c x^{2} + a\right )}{16 \,{\left (a^{3} c^{5} x^{4} + 2 \, a^{4} c^{4} x^{2} + a^{5} c^{3}\right )}}, -\frac{10 \, a^{3} c^{2} d^{4} e + 20 \, a^{4} c d^{2} e^{3} - 6 \, a^{5} e^{5} -{\left (3 \, a c^{4} d^{5} + 10 \, a^{2} c^{3} d^{3} e^{2} - 25 \, a^{3} c^{2} d e^{4}\right )} x^{3} + 8 \,{\left (5 \, a^{3} c^{2} d^{2} e^{3} - a^{4} c e^{5}\right )} x^{2} -{\left (3 \, a^{2} c^{2} d^{5} + 10 \, a^{3} c d^{3} e^{2} + 15 \, a^{4} d e^{4} +{\left (3 \, c^{4} d^{5} + 10 \, a c^{3} d^{3} e^{2} + 15 \, a^{2} c^{2} d e^{4}\right )} x^{4} + 2 \,{\left (3 \, a c^{3} d^{5} + 10 \, a^{2} c^{2} d^{3} e^{2} + 15 \, a^{3} c d e^{4}\right )} x^{2}\right )} \sqrt{a c} \arctan \left (\frac{\sqrt{a c} x}{a}\right ) - 5 \,{\left (a^{2} c^{3} d^{5} - 2 \, a^{3} c^{2} d^{3} e^{2} - 3 \, a^{4} c d e^{4}\right )} x - 4 \,{\left (a^{3} c^{2} e^{5} x^{4} + 2 \, a^{4} c e^{5} x^{2} + a^{5} e^{5}\right )} \log \left (c x^{2} + a\right )}{8 \,{\left (a^{3} c^{5} x^{4} + 2 \, a^{4} c^{4} x^{2} + a^{5} c^{3}\right )}}\right ] \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^5/(c*x^2+a)^3,x, algorithm="fricas")

[Out]

[-1/16*(20*a^3*c^2*d^4*e + 40*a^4*c*d^2*e^3 - 12*a^5*e^5 - 2*(3*a*c^4*d^5 + 10*a^2*c^3*d^3*e^2 - 25*a^3*c^2*d*
e^4)*x^3 + 16*(5*a^3*c^2*d^2*e^3 - a^4*c*e^5)*x^2 + (3*a^2*c^2*d^5 + 10*a^3*c*d^3*e^2 + 15*a^4*d*e^4 + (3*c^4*
d^5 + 10*a*c^3*d^3*e^2 + 15*a^2*c^2*d*e^4)*x^4 + 2*(3*a*c^3*d^5 + 10*a^2*c^2*d^3*e^2 + 15*a^3*c*d*e^4)*x^2)*sq
rt(-a*c)*log((c*x^2 - 2*sqrt(-a*c)*x - a)/(c*x^2 + a)) - 10*(a^2*c^3*d^5 - 2*a^3*c^2*d^3*e^2 - 3*a^4*c*d*e^4)*
x - 8*(a^3*c^2*e^5*x^4 + 2*a^4*c*e^5*x^2 + a^5*e^5)*log(c*x^2 + a))/(a^3*c^5*x^4 + 2*a^4*c^4*x^2 + a^5*c^3), -
1/8*(10*a^3*c^2*d^4*e + 20*a^4*c*d^2*e^3 - 6*a^5*e^5 - (3*a*c^4*d^5 + 10*a^2*c^3*d^3*e^2 - 25*a^3*c^2*d*e^4)*x
^3 + 8*(5*a^3*c^2*d^2*e^3 - a^4*c*e^5)*x^2 - (3*a^2*c^2*d^5 + 10*a^3*c*d^3*e^2 + 15*a^4*d*e^4 + (3*c^4*d^5 + 1
0*a*c^3*d^3*e^2 + 15*a^2*c^2*d*e^4)*x^4 + 2*(3*a*c^3*d^5 + 10*a^2*c^2*d^3*e^2 + 15*a^3*c*d*e^4)*x^2)*sqrt(a*c)
*arctan(sqrt(a*c)*x/a) - 5*(a^2*c^3*d^5 - 2*a^3*c^2*d^3*e^2 - 3*a^4*c*d*e^4)*x - 4*(a^3*c^2*e^5*x^4 + 2*a^4*c*
e^5*x^2 + a^5*e^5)*log(c*x^2 + a))/(a^3*c^5*x^4 + 2*a^4*c^4*x^2 + a^5*c^3)]

________________________________________________________________________________________

Sympy [B]  time = 4.43216, size = 520, normalized size = 2.63 \begin{align*} \left (\frac{e^{5}}{2 c^{3}} - \frac{d \sqrt{- a^{5} c^{7}} \left (15 a^{2} e^{4} + 10 a c d^{2} e^{2} + 3 c^{2} d^{4}\right )}{16 a^{5} c^{6}}\right ) \log{\left (x + \frac{16 a^{3} c^{3} \left (\frac{e^{5}}{2 c^{3}} - \frac{d \sqrt{- a^{5} c^{7}} \left (15 a^{2} e^{4} + 10 a c d^{2} e^{2} + 3 c^{2} d^{4}\right )}{16 a^{5} c^{6}}\right ) - 8 a^{3} e^{5}}{15 a^{2} c d e^{4} + 10 a c^{2} d^{3} e^{2} + 3 c^{3} d^{5}} \right )} + \left (\frac{e^{5}}{2 c^{3}} + \frac{d \sqrt{- a^{5} c^{7}} \left (15 a^{2} e^{4} + 10 a c d^{2} e^{2} + 3 c^{2} d^{4}\right )}{16 a^{5} c^{6}}\right ) \log{\left (x + \frac{16 a^{3} c^{3} \left (\frac{e^{5}}{2 c^{3}} + \frac{d \sqrt{- a^{5} c^{7}} \left (15 a^{2} e^{4} + 10 a c d^{2} e^{2} + 3 c^{2} d^{4}\right )}{16 a^{5} c^{6}}\right ) - 8 a^{3} e^{5}}{15 a^{2} c d e^{4} + 10 a c^{2} d^{3} e^{2} + 3 c^{3} d^{5}} \right )} - \frac{- 6 a^{4} e^{5} + 20 a^{3} c d^{2} e^{3} + 10 a^{2} c^{2} d^{4} e + x^{3} \left (25 a^{2} c^{2} d e^{4} - 10 a c^{3} d^{3} e^{2} - 3 c^{4} d^{5}\right ) + x^{2} \left (- 8 a^{3} c e^{5} + 40 a^{2} c^{2} d^{2} e^{3}\right ) + x \left (15 a^{3} c d e^{4} + 10 a^{2} c^{2} d^{3} e^{2} - 5 a c^{3} d^{5}\right )}{8 a^{4} c^{3} + 16 a^{3} c^{4} x^{2} + 8 a^{2} c^{5} x^{4}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**5/(c*x**2+a)**3,x)

[Out]

(e**5/(2*c**3) - d*sqrt(-a**5*c**7)*(15*a**2*e**4 + 10*a*c*d**2*e**2 + 3*c**2*d**4)/(16*a**5*c**6))*log(x + (1
6*a**3*c**3*(e**5/(2*c**3) - d*sqrt(-a**5*c**7)*(15*a**2*e**4 + 10*a*c*d**2*e**2 + 3*c**2*d**4)/(16*a**5*c**6)
) - 8*a**3*e**5)/(15*a**2*c*d*e**4 + 10*a*c**2*d**3*e**2 + 3*c**3*d**5)) + (e**5/(2*c**3) + d*sqrt(-a**5*c**7)
*(15*a**2*e**4 + 10*a*c*d**2*e**2 + 3*c**2*d**4)/(16*a**5*c**6))*log(x + (16*a**3*c**3*(e**5/(2*c**3) + d*sqrt
(-a**5*c**7)*(15*a**2*e**4 + 10*a*c*d**2*e**2 + 3*c**2*d**4)/(16*a**5*c**6)) - 8*a**3*e**5)/(15*a**2*c*d*e**4
+ 10*a*c**2*d**3*e**2 + 3*c**3*d**5)) - (-6*a**4*e**5 + 20*a**3*c*d**2*e**3 + 10*a**2*c**2*d**4*e + x**3*(25*a
**2*c**2*d*e**4 - 10*a*c**3*d**3*e**2 - 3*c**4*d**5) + x**2*(-8*a**3*c*e**5 + 40*a**2*c**2*d**2*e**3) + x*(15*
a**3*c*d*e**4 + 10*a**2*c**2*d**3*e**2 - 5*a*c**3*d**5))/(8*a**4*c**3 + 16*a**3*c**4*x**2 + 8*a**2*c**5*x**4)

________________________________________________________________________________________

Giac [A]  time = 1.26101, size = 279, normalized size = 1.41 \begin{align*} \frac{e^{5} \log \left (c x^{2} + a\right )}{2 \, c^{3}} + \frac{{\left (3 \, c^{2} d^{5} + 10 \, a c d^{3} e^{2} + 15 \, a^{2} d e^{4}\right )} \arctan \left (\frac{c x}{\sqrt{a c}}\right )}{8 \, \sqrt{a c} a^{2} c^{2}} + \frac{{\left (3 \, c^{3} d^{5} + 10 \, a c^{2} d^{3} e^{2} - 25 \, a^{2} c d e^{4}\right )} x^{3} - 8 \,{\left (5 \, a^{2} c d^{2} e^{3} - a^{3} e^{5}\right )} x^{2} + 5 \,{\left (a c^{2} d^{5} - 2 \, a^{2} c d^{3} e^{2} - 3 \, a^{3} d e^{4}\right )} x - \frac{2 \,{\left (5 \, a^{2} c^{2} d^{4} e + 10 \, a^{3} c d^{2} e^{3} - 3 \, a^{4} e^{5}\right )}}{c}}{8 \,{\left (c x^{2} + a\right )}^{2} a^{2} c^{2}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^5/(c*x^2+a)^3,x, algorithm="giac")

[Out]

1/2*e^5*log(c*x^2 + a)/c^3 + 1/8*(3*c^2*d^5 + 10*a*c*d^3*e^2 + 15*a^2*d*e^4)*arctan(c*x/sqrt(a*c))/(sqrt(a*c)*
a^2*c^2) + 1/8*((3*c^3*d^5 + 10*a*c^2*d^3*e^2 - 25*a^2*c*d*e^4)*x^3 - 8*(5*a^2*c*d^2*e^3 - a^3*e^5)*x^2 + 5*(a
*c^2*d^5 - 2*a^2*c*d^3*e^2 - 3*a^3*d*e^4)*x - 2*(5*a^2*c^2*d^4*e + 10*a^3*c*d^2*e^3 - 3*a^4*e^5)/c)/((c*x^2 +
a)^2*a^2*c^2)