### 3.489 $$\int (d+e x)^6 (a+c x^2)^4 \, dx$$

Optimal. Leaf size=276 $\frac{2 c^2 (d+e x)^{11} \left (3 a^2 e^4+30 a c d^2 e^2+35 c^2 d^4\right )}{11 e^9}+\frac{4 c^3 (d+e x)^{13} \left (a e^2+7 c d^2\right )}{13 e^9}-\frac{2 c^3 d (d+e x)^{12} \left (3 a e^2+7 c d^2\right )}{3 e^9}-\frac{4 c^2 d (d+e x)^{10} \left (a e^2+c d^2\right ) \left (3 a e^2+7 c d^2\right )}{5 e^9}+\frac{4 c (d+e x)^9 \left (a e^2+c d^2\right )^2 \left (a e^2+7 c d^2\right )}{9 e^9}-\frac{c d (d+e x)^8 \left (a e^2+c d^2\right )^3}{e^9}+\frac{(d+e x)^7 \left (a e^2+c d^2\right )^4}{7 e^9}+\frac{c^4 (d+e x)^{15}}{15 e^9}-\frac{4 c^4 d (d+e x)^{14}}{7 e^9}$

[Out]

((c*d^2 + a*e^2)^4*(d + e*x)^7)/(7*e^9) - (c*d*(c*d^2 + a*e^2)^3*(d + e*x)^8)/e^9 + (4*c*(c*d^2 + a*e^2)^2*(7*
c*d^2 + a*e^2)*(d + e*x)^9)/(9*e^9) - (4*c^2*d*(c*d^2 + a*e^2)*(7*c*d^2 + 3*a*e^2)*(d + e*x)^10)/(5*e^9) + (2*
c^2*(35*c^2*d^4 + 30*a*c*d^2*e^2 + 3*a^2*e^4)*(d + e*x)^11)/(11*e^9) - (2*c^3*d*(7*c*d^2 + 3*a*e^2)*(d + e*x)^
12)/(3*e^9) + (4*c^3*(7*c*d^2 + a*e^2)*(d + e*x)^13)/(13*e^9) - (4*c^4*d*(d + e*x)^14)/(7*e^9) + (c^4*(d + e*x
)^15)/(15*e^9)

________________________________________________________________________________________

Rubi [A]  time = 0.458363, antiderivative size = 276, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 1, integrand size = 17, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.059, Rules used = {697} $\frac{2 c^2 (d+e x)^{11} \left (3 a^2 e^4+30 a c d^2 e^2+35 c^2 d^4\right )}{11 e^9}+\frac{4 c^3 (d+e x)^{13} \left (a e^2+7 c d^2\right )}{13 e^9}-\frac{2 c^3 d (d+e x)^{12} \left (3 a e^2+7 c d^2\right )}{3 e^9}-\frac{4 c^2 d (d+e x)^{10} \left (a e^2+c d^2\right ) \left (3 a e^2+7 c d^2\right )}{5 e^9}+\frac{4 c (d+e x)^9 \left (a e^2+c d^2\right )^2 \left (a e^2+7 c d^2\right )}{9 e^9}-\frac{c d (d+e x)^8 \left (a e^2+c d^2\right )^3}{e^9}+\frac{(d+e x)^7 \left (a e^2+c d^2\right )^4}{7 e^9}+\frac{c^4 (d+e x)^{15}}{15 e^9}-\frac{4 c^4 d (d+e x)^{14}}{7 e^9}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^6*(a + c*x^2)^4,x]

[Out]

((c*d^2 + a*e^2)^4*(d + e*x)^7)/(7*e^9) - (c*d*(c*d^2 + a*e^2)^3*(d + e*x)^8)/e^9 + (4*c*(c*d^2 + a*e^2)^2*(7*
c*d^2 + a*e^2)*(d + e*x)^9)/(9*e^9) - (4*c^2*d*(c*d^2 + a*e^2)*(7*c*d^2 + 3*a*e^2)*(d + e*x)^10)/(5*e^9) + (2*
c^2*(35*c^2*d^4 + 30*a*c*d^2*e^2 + 3*a^2*e^4)*(d + e*x)^11)/(11*e^9) - (2*c^3*d*(7*c*d^2 + 3*a*e^2)*(d + e*x)^
12)/(3*e^9) + (4*c^3*(7*c*d^2 + a*e^2)*(d + e*x)^13)/(13*e^9) - (4*c^4*d*(d + e*x)^14)/(7*e^9) + (c^4*(d + e*x
)^15)/(15*e^9)

Rule 697

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*(a + c*
x^2)^p, x], x] /; FreeQ[{a, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[p, 0]

Rubi steps

\begin{align*} \int (d+e x)^6 \left (a+c x^2\right )^4 \, dx &=\int \left (\frac{\left (c d^2+a e^2\right )^4 (d+e x)^6}{e^8}-\frac{8 c d \left (c d^2+a e^2\right )^3 (d+e x)^7}{e^8}+\frac{4 c \left (c d^2+a e^2\right )^2 \left (7 c d^2+a e^2\right ) (d+e x)^8}{e^8}+\frac{8 c^2 d \left (-7 c d^2-3 a e^2\right ) \left (c d^2+a e^2\right ) (d+e x)^9}{e^8}+\frac{2 c^2 \left (35 c^2 d^4+30 a c d^2 e^2+3 a^2 e^4\right ) (d+e x)^{10}}{e^8}-\frac{8 c^3 d \left (7 c d^2+3 a e^2\right ) (d+e x)^{11}}{e^8}+\frac{4 c^3 \left (7 c d^2+a e^2\right ) (d+e x)^{12}}{e^8}-\frac{8 c^4 d (d+e x)^{13}}{e^8}+\frac{c^4 (d+e x)^{14}}{e^8}\right ) \, dx\\ &=\frac{\left (c d^2+a e^2\right )^4 (d+e x)^7}{7 e^9}-\frac{c d \left (c d^2+a e^2\right )^3 (d+e x)^8}{e^9}+\frac{4 c \left (c d^2+a e^2\right )^2 \left (7 c d^2+a e^2\right ) (d+e x)^9}{9 e^9}-\frac{4 c^2 d \left (c d^2+a e^2\right ) \left (7 c d^2+3 a e^2\right ) (d+e x)^{10}}{5 e^9}+\frac{2 c^2 \left (35 c^2 d^4+30 a c d^2 e^2+3 a^2 e^4\right ) (d+e x)^{11}}{11 e^9}-\frac{2 c^3 d \left (7 c d^2+3 a e^2\right ) (d+e x)^{12}}{3 e^9}+\frac{4 c^3 \left (7 c d^2+a e^2\right ) (d+e x)^{13}}{13 e^9}-\frac{4 c^4 d (d+e x)^{14}}{7 e^9}+\frac{c^4 (d+e x)^{15}}{15 e^9}\\ \end{align*}

Mathematica [A]  time = 0.122988, size = 361, normalized size = 1.31 $\frac{117 a^2 c^2 x^5 \left (4950 d^4 e^2 x^2+5775 d^3 e^3 x^3+3850 d^2 e^4 x^4+2310 d^5 e x+462 d^6+1386 d e^5 x^5+210 e^6 x^6\right )+715 a^3 c x^3 \left (756 d^4 e^2 x^2+840 d^3 e^3 x^3+540 d^2 e^4 x^4+378 d^5 e x+84 d^6+189 d e^5 x^5+28 e^6 x^6\right )+6435 a^4 x \left (35 d^4 e^2 x^2+35 d^3 e^3 x^3+21 d^2 e^4 x^4+21 d^5 e x+7 d^6+7 d e^5 x^5+e^6 x^6\right )+15 a c^3 x^7 \left (20020 d^4 e^2 x^2+24024 d^3 e^3 x^3+16380 d^2 e^4 x^4+9009 d^5 e x+1716 d^6+6006 d e^5 x^5+924 e^6 x^6\right )+c^4 x^9 \left (61425 d^4 e^2 x^2+75075 d^3 e^3 x^3+51975 d^2 e^4 x^4+27027 d^5 e x+5005 d^6+19305 d e^5 x^5+3003 e^6 x^6\right )}{45045}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^6*(a + c*x^2)^4,x]

[Out]

(6435*a^4*x*(7*d^6 + 21*d^5*e*x + 35*d^4*e^2*x^2 + 35*d^3*e^3*x^3 + 21*d^2*e^4*x^4 + 7*d*e^5*x^5 + e^6*x^6) +
715*a^3*c*x^3*(84*d^6 + 378*d^5*e*x + 756*d^4*e^2*x^2 + 840*d^3*e^3*x^3 + 540*d^2*e^4*x^4 + 189*d*e^5*x^5 + 28
*e^6*x^6) + 117*a^2*c^2*x^5*(462*d^6 + 2310*d^5*e*x + 4950*d^4*e^2*x^2 + 5775*d^3*e^3*x^3 + 3850*d^2*e^4*x^4 +
1386*d*e^5*x^5 + 210*e^6*x^6) + 15*a*c^3*x^7*(1716*d^6 + 9009*d^5*e*x + 20020*d^4*e^2*x^2 + 24024*d^3*e^3*x^3
+ 16380*d^2*e^4*x^4 + 6006*d*e^5*x^5 + 924*e^6*x^6) + c^4*x^9*(5005*d^6 + 27027*d^5*e*x + 61425*d^4*e^2*x^2 +
75075*d^3*e^3*x^3 + 51975*d^2*e^4*x^4 + 19305*d*e^5*x^5 + 3003*e^6*x^6))/45045

________________________________________________________________________________________

Maple [A]  time = 0.043, size = 445, normalized size = 1.6 \begin{align*}{\frac{{e}^{6}{c}^{4}{x}^{15}}{15}}+{\frac{3\,d{e}^{5}{c}^{4}{x}^{14}}{7}}+{\frac{ \left ( 4\,{e}^{6}a{c}^{3}+15\,{d}^{2}{e}^{4}{c}^{4} \right ){x}^{13}}{13}}+{\frac{ \left ( 24\,d{e}^{5}a{c}^{3}+20\,{d}^{3}{e}^{3}{c}^{4} \right ){x}^{12}}{12}}+{\frac{ \left ( 6\,{e}^{6}{a}^{2}{c}^{2}+60\,{d}^{2}{e}^{4}a{c}^{3}+15\,{d}^{4}{e}^{2}{c}^{4} \right ){x}^{11}}{11}}+{\frac{ \left ( 36\,d{e}^{5}{a}^{2}{c}^{2}+80\,{d}^{3}{e}^{3}a{c}^{3}+6\,{d}^{5}e{c}^{4} \right ){x}^{10}}{10}}+{\frac{ \left ( 4\,{e}^{6}{a}^{3}c+90\,{d}^{2}{e}^{4}{a}^{2}{c}^{2}+60\,{d}^{4}{e}^{2}a{c}^{3}+{d}^{6}{c}^{4} \right ){x}^{9}}{9}}+{\frac{ \left ( 24\,d{e}^{5}{a}^{3}c+120\,{d}^{3}{e}^{3}{a}^{2}{c}^{2}+24\,{d}^{5}ea{c}^{3} \right ){x}^{8}}{8}}+{\frac{ \left ({e}^{6}{a}^{4}+60\,{d}^{2}{e}^{4}{a}^{3}c+90\,{d}^{4}{e}^{2}{a}^{2}{c}^{2}+4\,{d}^{6}a{c}^{3} \right ){x}^{7}}{7}}+{\frac{ \left ( 6\,d{e}^{5}{a}^{4}+80\,{d}^{3}{e}^{3}{a}^{3}c+36\,{d}^{5}e{a}^{2}{c}^{2} \right ){x}^{6}}{6}}+{\frac{ \left ( 15\,{d}^{2}{e}^{4}{a}^{4}+60\,{d}^{4}{e}^{2}{a}^{3}c+6\,{d}^{6}{a}^{2}{c}^{2} \right ){x}^{5}}{5}}+{\frac{ \left ( 20\,{d}^{3}{e}^{3}{a}^{4}+24\,{d}^{5}e{a}^{3}c \right ){x}^{4}}{4}}+{\frac{ \left ( 15\,{d}^{4}{e}^{2}{a}^{4}+4\,{d}^{6}{a}^{3}c \right ){x}^{3}}{3}}+3\,{d}^{5}e{a}^{4}{x}^{2}+{d}^{6}{a}^{4}x \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^6*(c*x^2+a)^4,x)

[Out]

1/15*e^6*c^4*x^15+3/7*d*e^5*c^4*x^14+1/13*(4*a*c^3*e^6+15*c^4*d^2*e^4)*x^13+1/12*(24*a*c^3*d*e^5+20*c^4*d^3*e^
3)*x^12+1/11*(6*a^2*c^2*e^6+60*a*c^3*d^2*e^4+15*c^4*d^4*e^2)*x^11+1/10*(36*a^2*c^2*d*e^5+80*a*c^3*d^3*e^3+6*c^
4*d^5*e)*x^10+1/9*(4*a^3*c*e^6+90*a^2*c^2*d^2*e^4+60*a*c^3*d^4*e^2+c^4*d^6)*x^9+1/8*(24*a^3*c*d*e^5+120*a^2*c^
2*d^3*e^3+24*a*c^3*d^5*e)*x^8+1/7*(a^4*e^6+60*a^3*c*d^2*e^4+90*a^2*c^2*d^4*e^2+4*a*c^3*d^6)*x^7+1/6*(6*a^4*d*e
^5+80*a^3*c*d^3*e^3+36*a^2*c^2*d^5*e)*x^6+1/5*(15*a^4*d^2*e^4+60*a^3*c*d^4*e^2+6*a^2*c^2*d^6)*x^5+1/4*(20*a^4*
d^3*e^3+24*a^3*c*d^5*e)*x^4+1/3*(15*a^4*d^4*e^2+4*a^3*c*d^6)*x^3+3*d^5*e*a^4*x^2+d^6*a^4*x

________________________________________________________________________________________

Maxima [A]  time = 1.19209, size = 595, normalized size = 2.16 \begin{align*} \frac{1}{15} \, c^{4} e^{6} x^{15} + \frac{3}{7} \, c^{4} d e^{5} x^{14} + \frac{1}{13} \,{\left (15 \, c^{4} d^{2} e^{4} + 4 \, a c^{3} e^{6}\right )} x^{13} + \frac{1}{3} \,{\left (5 \, c^{4} d^{3} e^{3} + 6 \, a c^{3} d e^{5}\right )} x^{12} + 3 \, a^{4} d^{5} e x^{2} + \frac{3}{11} \,{\left (5 \, c^{4} d^{4} e^{2} + 20 \, a c^{3} d^{2} e^{4} + 2 \, a^{2} c^{2} e^{6}\right )} x^{11} + a^{4} d^{6} x + \frac{1}{5} \,{\left (3 \, c^{4} d^{5} e + 40 \, a c^{3} d^{3} e^{3} + 18 \, a^{2} c^{2} d e^{5}\right )} x^{10} + \frac{1}{9} \,{\left (c^{4} d^{6} + 60 \, a c^{3} d^{4} e^{2} + 90 \, a^{2} c^{2} d^{2} e^{4} + 4 \, a^{3} c e^{6}\right )} x^{9} + 3 \,{\left (a c^{3} d^{5} e + 5 \, a^{2} c^{2} d^{3} e^{3} + a^{3} c d e^{5}\right )} x^{8} + \frac{1}{7} \,{\left (4 \, a c^{3} d^{6} + 90 \, a^{2} c^{2} d^{4} e^{2} + 60 \, a^{3} c d^{2} e^{4} + a^{4} e^{6}\right )} x^{7} + \frac{1}{3} \,{\left (18 \, a^{2} c^{2} d^{5} e + 40 \, a^{3} c d^{3} e^{3} + 3 \, a^{4} d e^{5}\right )} x^{6} + \frac{3}{5} \,{\left (2 \, a^{2} c^{2} d^{6} + 20 \, a^{3} c d^{4} e^{2} + 5 \, a^{4} d^{2} e^{4}\right )} x^{5} +{\left (6 \, a^{3} c d^{5} e + 5 \, a^{4} d^{3} e^{3}\right )} x^{4} + \frac{1}{3} \,{\left (4 \, a^{3} c d^{6} + 15 \, a^{4} d^{4} e^{2}\right )} x^{3} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^6*(c*x^2+a)^4,x, algorithm="maxima")

[Out]

1/15*c^4*e^6*x^15 + 3/7*c^4*d*e^5*x^14 + 1/13*(15*c^4*d^2*e^4 + 4*a*c^3*e^6)*x^13 + 1/3*(5*c^4*d^3*e^3 + 6*a*c
^3*d*e^5)*x^12 + 3*a^4*d^5*e*x^2 + 3/11*(5*c^4*d^4*e^2 + 20*a*c^3*d^2*e^4 + 2*a^2*c^2*e^6)*x^11 + a^4*d^6*x +
1/5*(3*c^4*d^5*e + 40*a*c^3*d^3*e^3 + 18*a^2*c^2*d*e^5)*x^10 + 1/9*(c^4*d^6 + 60*a*c^3*d^4*e^2 + 90*a^2*c^2*d^
2*e^4 + 4*a^3*c*e^6)*x^9 + 3*(a*c^3*d^5*e + 5*a^2*c^2*d^3*e^3 + a^3*c*d*e^5)*x^8 + 1/7*(4*a*c^3*d^6 + 90*a^2*c
^2*d^4*e^2 + 60*a^3*c*d^2*e^4 + a^4*e^6)*x^7 + 1/3*(18*a^2*c^2*d^5*e + 40*a^3*c*d^3*e^3 + 3*a^4*d*e^5)*x^6 + 3
/5*(2*a^2*c^2*d^6 + 20*a^3*c*d^4*e^2 + 5*a^4*d^2*e^4)*x^5 + (6*a^3*c*d^5*e + 5*a^4*d^3*e^3)*x^4 + 1/3*(4*a^3*c
*d^6 + 15*a^4*d^4*e^2)*x^3

________________________________________________________________________________________

Fricas [A]  time = 1.87541, size = 1023, normalized size = 3.71 \begin{align*} \frac{1}{15} x^{15} e^{6} c^{4} + \frac{3}{7} x^{14} e^{5} d c^{4} + \frac{15}{13} x^{13} e^{4} d^{2} c^{4} + \frac{4}{13} x^{13} e^{6} c^{3} a + \frac{5}{3} x^{12} e^{3} d^{3} c^{4} + 2 x^{12} e^{5} d c^{3} a + \frac{15}{11} x^{11} e^{2} d^{4} c^{4} + \frac{60}{11} x^{11} e^{4} d^{2} c^{3} a + \frac{6}{11} x^{11} e^{6} c^{2} a^{2} + \frac{3}{5} x^{10} e d^{5} c^{4} + 8 x^{10} e^{3} d^{3} c^{3} a + \frac{18}{5} x^{10} e^{5} d c^{2} a^{2} + \frac{1}{9} x^{9} d^{6} c^{4} + \frac{20}{3} x^{9} e^{2} d^{4} c^{3} a + 10 x^{9} e^{4} d^{2} c^{2} a^{2} + \frac{4}{9} x^{9} e^{6} c a^{3} + 3 x^{8} e d^{5} c^{3} a + 15 x^{8} e^{3} d^{3} c^{2} a^{2} + 3 x^{8} e^{5} d c a^{3} + \frac{4}{7} x^{7} d^{6} c^{3} a + \frac{90}{7} x^{7} e^{2} d^{4} c^{2} a^{2} + \frac{60}{7} x^{7} e^{4} d^{2} c a^{3} + \frac{1}{7} x^{7} e^{6} a^{4} + 6 x^{6} e d^{5} c^{2} a^{2} + \frac{40}{3} x^{6} e^{3} d^{3} c a^{3} + x^{6} e^{5} d a^{4} + \frac{6}{5} x^{5} d^{6} c^{2} a^{2} + 12 x^{5} e^{2} d^{4} c a^{3} + 3 x^{5} e^{4} d^{2} a^{4} + 6 x^{4} e d^{5} c a^{3} + 5 x^{4} e^{3} d^{3} a^{4} + \frac{4}{3} x^{3} d^{6} c a^{3} + 5 x^{3} e^{2} d^{4} a^{4} + 3 x^{2} e d^{5} a^{4} + x d^{6} a^{4} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^6*(c*x^2+a)^4,x, algorithm="fricas")

[Out]

1/15*x^15*e^6*c^4 + 3/7*x^14*e^5*d*c^4 + 15/13*x^13*e^4*d^2*c^4 + 4/13*x^13*e^6*c^3*a + 5/3*x^12*e^3*d^3*c^4 +
2*x^12*e^5*d*c^3*a + 15/11*x^11*e^2*d^4*c^4 + 60/11*x^11*e^4*d^2*c^3*a + 6/11*x^11*e^6*c^2*a^2 + 3/5*x^10*e*d
^5*c^4 + 8*x^10*e^3*d^3*c^3*a + 18/5*x^10*e^5*d*c^2*a^2 + 1/9*x^9*d^6*c^4 + 20/3*x^9*e^2*d^4*c^3*a + 10*x^9*e^
4*d^2*c^2*a^2 + 4/9*x^9*e^6*c*a^3 + 3*x^8*e*d^5*c^3*a + 15*x^8*e^3*d^3*c^2*a^2 + 3*x^8*e^5*d*c*a^3 + 4/7*x^7*d
^6*c^3*a + 90/7*x^7*e^2*d^4*c^2*a^2 + 60/7*x^7*e^4*d^2*c*a^3 + 1/7*x^7*e^6*a^4 + 6*x^6*e*d^5*c^2*a^2 + 40/3*x^
6*e^3*d^3*c*a^3 + x^6*e^5*d*a^4 + 6/5*x^5*d^6*c^2*a^2 + 12*x^5*e^2*d^4*c*a^3 + 3*x^5*e^4*d^2*a^4 + 6*x^4*e*d^5
*c*a^3 + 5*x^4*e^3*d^3*a^4 + 4/3*x^3*d^6*c*a^3 + 5*x^3*e^2*d^4*a^4 + 3*x^2*e*d^5*a^4 + x*d^6*a^4

________________________________________________________________________________________

Sympy [A]  time = 0.12627, size = 486, normalized size = 1.76 \begin{align*} a^{4} d^{6} x + 3 a^{4} d^{5} e x^{2} + \frac{3 c^{4} d e^{5} x^{14}}{7} + \frac{c^{4} e^{6} x^{15}}{15} + x^{13} \left (\frac{4 a c^{3} e^{6}}{13} + \frac{15 c^{4} d^{2} e^{4}}{13}\right ) + x^{12} \left (2 a c^{3} d e^{5} + \frac{5 c^{4} d^{3} e^{3}}{3}\right ) + x^{11} \left (\frac{6 a^{2} c^{2} e^{6}}{11} + \frac{60 a c^{3} d^{2} e^{4}}{11} + \frac{15 c^{4} d^{4} e^{2}}{11}\right ) + x^{10} \left (\frac{18 a^{2} c^{2} d e^{5}}{5} + 8 a c^{3} d^{3} e^{3} + \frac{3 c^{4} d^{5} e}{5}\right ) + x^{9} \left (\frac{4 a^{3} c e^{6}}{9} + 10 a^{2} c^{2} d^{2} e^{4} + \frac{20 a c^{3} d^{4} e^{2}}{3} + \frac{c^{4} d^{6}}{9}\right ) + x^{8} \left (3 a^{3} c d e^{5} + 15 a^{2} c^{2} d^{3} e^{3} + 3 a c^{3} d^{5} e\right ) + x^{7} \left (\frac{a^{4} e^{6}}{7} + \frac{60 a^{3} c d^{2} e^{4}}{7} + \frac{90 a^{2} c^{2} d^{4} e^{2}}{7} + \frac{4 a c^{3} d^{6}}{7}\right ) + x^{6} \left (a^{4} d e^{5} + \frac{40 a^{3} c d^{3} e^{3}}{3} + 6 a^{2} c^{2} d^{5} e\right ) + x^{5} \left (3 a^{4} d^{2} e^{4} + 12 a^{3} c d^{4} e^{2} + \frac{6 a^{2} c^{2} d^{6}}{5}\right ) + x^{4} \left (5 a^{4} d^{3} e^{3} + 6 a^{3} c d^{5} e\right ) + x^{3} \left (5 a^{4} d^{4} e^{2} + \frac{4 a^{3} c d^{6}}{3}\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**6*(c*x**2+a)**4,x)

[Out]

a**4*d**6*x + 3*a**4*d**5*e*x**2 + 3*c**4*d*e**5*x**14/7 + c**4*e**6*x**15/15 + x**13*(4*a*c**3*e**6/13 + 15*c
**4*d**2*e**4/13) + x**12*(2*a*c**3*d*e**5 + 5*c**4*d**3*e**3/3) + x**11*(6*a**2*c**2*e**6/11 + 60*a*c**3*d**2
*e**4/11 + 15*c**4*d**4*e**2/11) + x**10*(18*a**2*c**2*d*e**5/5 + 8*a*c**3*d**3*e**3 + 3*c**4*d**5*e/5) + x**9
*(4*a**3*c*e**6/9 + 10*a**2*c**2*d**2*e**4 + 20*a*c**3*d**4*e**2/3 + c**4*d**6/9) + x**8*(3*a**3*c*d*e**5 + 15
*a**2*c**2*d**3*e**3 + 3*a*c**3*d**5*e) + x**7*(a**4*e**6/7 + 60*a**3*c*d**2*e**4/7 + 90*a**2*c**2*d**4*e**2/7
+ 4*a*c**3*d**6/7) + x**6*(a**4*d*e**5 + 40*a**3*c*d**3*e**3/3 + 6*a**2*c**2*d**5*e) + x**5*(3*a**4*d**2*e**4
+ 12*a**3*c*d**4*e**2 + 6*a**2*c**2*d**6/5) + x**4*(5*a**4*d**3*e**3 + 6*a**3*c*d**5*e) + x**3*(5*a**4*d**4*e
**2 + 4*a**3*c*d**6/3)

________________________________________________________________________________________

Giac [A]  time = 1.28685, size = 610, normalized size = 2.21 \begin{align*} \frac{1}{15} \, c^{4} x^{15} e^{6} + \frac{3}{7} \, c^{4} d x^{14} e^{5} + \frac{15}{13} \, c^{4} d^{2} x^{13} e^{4} + \frac{5}{3} \, c^{4} d^{3} x^{12} e^{3} + \frac{15}{11} \, c^{4} d^{4} x^{11} e^{2} + \frac{3}{5} \, c^{4} d^{5} x^{10} e + \frac{1}{9} \, c^{4} d^{6} x^{9} + \frac{4}{13} \, a c^{3} x^{13} e^{6} + 2 \, a c^{3} d x^{12} e^{5} + \frac{60}{11} \, a c^{3} d^{2} x^{11} e^{4} + 8 \, a c^{3} d^{3} x^{10} e^{3} + \frac{20}{3} \, a c^{3} d^{4} x^{9} e^{2} + 3 \, a c^{3} d^{5} x^{8} e + \frac{4}{7} \, a c^{3} d^{6} x^{7} + \frac{6}{11} \, a^{2} c^{2} x^{11} e^{6} + \frac{18}{5} \, a^{2} c^{2} d x^{10} e^{5} + 10 \, a^{2} c^{2} d^{2} x^{9} e^{4} + 15 \, a^{2} c^{2} d^{3} x^{8} e^{3} + \frac{90}{7} \, a^{2} c^{2} d^{4} x^{7} e^{2} + 6 \, a^{2} c^{2} d^{5} x^{6} e + \frac{6}{5} \, a^{2} c^{2} d^{6} x^{5} + \frac{4}{9} \, a^{3} c x^{9} e^{6} + 3 \, a^{3} c d x^{8} e^{5} + \frac{60}{7} \, a^{3} c d^{2} x^{7} e^{4} + \frac{40}{3} \, a^{3} c d^{3} x^{6} e^{3} + 12 \, a^{3} c d^{4} x^{5} e^{2} + 6 \, a^{3} c d^{5} x^{4} e + \frac{4}{3} \, a^{3} c d^{6} x^{3} + \frac{1}{7} \, a^{4} x^{7} e^{6} + a^{4} d x^{6} e^{5} + 3 \, a^{4} d^{2} x^{5} e^{4} + 5 \, a^{4} d^{3} x^{4} e^{3} + 5 \, a^{4} d^{4} x^{3} e^{2} + 3 \, a^{4} d^{5} x^{2} e + a^{4} d^{6} x \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^6*(c*x^2+a)^4,x, algorithm="giac")

[Out]

1/15*c^4*x^15*e^6 + 3/7*c^4*d*x^14*e^5 + 15/13*c^4*d^2*x^13*e^4 + 5/3*c^4*d^3*x^12*e^3 + 15/11*c^4*d^4*x^11*e^
2 + 3/5*c^4*d^5*x^10*e + 1/9*c^4*d^6*x^9 + 4/13*a*c^3*x^13*e^6 + 2*a*c^3*d*x^12*e^5 + 60/11*a*c^3*d^2*x^11*e^4
+ 8*a*c^3*d^3*x^10*e^3 + 20/3*a*c^3*d^4*x^9*e^2 + 3*a*c^3*d^5*x^8*e + 4/7*a*c^3*d^6*x^7 + 6/11*a^2*c^2*x^11*e
^6 + 18/5*a^2*c^2*d*x^10*e^5 + 10*a^2*c^2*d^2*x^9*e^4 + 15*a^2*c^2*d^3*x^8*e^3 + 90/7*a^2*c^2*d^4*x^7*e^2 + 6*
a^2*c^2*d^5*x^6*e + 6/5*a^2*c^2*d^6*x^5 + 4/9*a^3*c*x^9*e^6 + 3*a^3*c*d*x^8*e^5 + 60/7*a^3*c*d^2*x^7*e^4 + 40/
3*a^3*c*d^3*x^6*e^3 + 12*a^3*c*d^4*x^5*e^2 + 6*a^3*c*d^5*x^4*e + 4/3*a^3*c*d^6*x^3 + 1/7*a^4*x^7*e^6 + a^4*d*x
^6*e^5 + 3*a^4*d^2*x^5*e^4 + 5*a^4*d^3*x^4*e^3 + 5*a^4*d^4*x^3*e^2 + 3*a^4*d^5*x^2*e + a^4*d^6*x