### 3.424 $$\int \frac{(d+e x)^{3/2}}{(b x+c x^2)^{5/2}} \, dx$$

Optimal. Leaf size=344 $\frac{2 \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{\frac{e x}{d}+1} (4 c d-3 b e) (4 c d-b e) \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right ),\frac{b e}{c d}\right )}{3 (-b)^{7/2} \sqrt{c} \sqrt{b x+c x^2} \sqrt{d+e x}}-\frac{2 \sqrt{d+e x} (x (2 c d-b e)+b d)}{3 b^2 \left (b x+c x^2\right )^{3/2}}+\frac{2 \sqrt{d+e x} (8 c x (2 c d-b e) (c d-b e)+b (8 c d-5 b e) (c d-b e))}{3 b^4 \sqrt{b x+c x^2} (c d-b e)}-\frac{16 \sqrt{c} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{d+e x} (2 c d-b e) E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{3 (-b)^{7/2} \sqrt{b x+c x^2} \sqrt{\frac{e x}{d}+1}}$

[Out]

(-2*Sqrt[d + e*x]*(b*d + (2*c*d - b*e)*x))/(3*b^2*(b*x + c*x^2)^(3/2)) + (2*Sqrt[d + e*x]*(b*(8*c*d - 5*b*e)*(
c*d - b*e) + 8*c*(c*d - b*e)*(2*c*d - b*e)*x))/(3*b^4*(c*d - b*e)*Sqrt[b*x + c*x^2]) - (16*Sqrt[c]*(2*c*d - b*
e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d + e*x]*EllipticE[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(3*(-b)
^(7/2)*Sqrt[1 + (e*x)/d]*Sqrt[b*x + c*x^2]) + (2*(4*c*d - 3*b*e)*(4*c*d - b*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[
1 + (e*x)/d]*EllipticF[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(3*(-b)^(7/2)*Sqrt[c]*Sqrt[d + e*x]*S
qrt[b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.416195, antiderivative size = 344, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 23, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.348, Rules used = {738, 822, 843, 715, 112, 110, 117, 116} $-\frac{2 \sqrt{d+e x} (x (2 c d-b e)+b d)}{3 b^2 \left (b x+c x^2\right )^{3/2}}+\frac{2 \sqrt{d+e x} (8 c x (2 c d-b e) (c d-b e)+b (8 c d-5 b e) (c d-b e))}{3 b^4 \sqrt{b x+c x^2} (c d-b e)}+\frac{2 \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{\frac{e x}{d}+1} (4 c d-3 b e) (4 c d-b e) F\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{3 (-b)^{7/2} \sqrt{c} \sqrt{b x+c x^2} \sqrt{d+e x}}-\frac{16 \sqrt{c} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{d+e x} (2 c d-b e) E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{3 (-b)^{7/2} \sqrt{b x+c x^2} \sqrt{\frac{e x}{d}+1}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^(3/2)/(b*x + c*x^2)^(5/2),x]

[Out]

(-2*Sqrt[d + e*x]*(b*d + (2*c*d - b*e)*x))/(3*b^2*(b*x + c*x^2)^(3/2)) + (2*Sqrt[d + e*x]*(b*(8*c*d - 5*b*e)*(
c*d - b*e) + 8*c*(c*d - b*e)*(2*c*d - b*e)*x))/(3*b^4*(c*d - b*e)*Sqrt[b*x + c*x^2]) - (16*Sqrt[c]*(2*c*d - b*
e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d + e*x]*EllipticE[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(3*(-b)
^(7/2)*Sqrt[1 + (e*x)/d]*Sqrt[b*x + c*x^2]) + (2*(4*c*d - 3*b*e)*(4*c*d - b*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[
1 + (e*x)/d]*EllipticF[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(3*(-b)^(7/2)*Sqrt[c]*Sqrt[d + e*x]*S
qrt[b*x + c*x^2])

Rule 738

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(
d*b - 2*a*e + (2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] + Dist[1/((p + 1)*(b^2 -
4*a*c)), Int[(d + e*x)^(m - 2)*Simp[e*(2*a*e*(m - 1) + b*d*(2*p - m + 4)) - 2*c*d^2*(2*p + 3) + e*(b*e - 2*d*
c)*(m + 2*p + 2)*x, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] &
& NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && GtQ[m, 1] && IntQuadraticQ[a, b, c, d,
e, m, p, x]

Rule 822

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x
)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 715

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(Sqrt[x]*Sqrt[b + c*x])/Sqrt[
b*x + c*x^2], Int[(d + e*x)^m/(Sqrt[x]*Sqrt[b + c*x]), x], x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0] &
& NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 112

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[e + f*x]*Sqrt[
1 + (d*x)/c])/(Sqrt[c + d*x]*Sqrt[1 + (f*x)/e]), Int[Sqrt[1 + (f*x)/e]/(Sqrt[b*x]*Sqrt[1 + (d*x)/c]), x], x] /
; FreeQ[{b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 110

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Sqrt[e]*Rt[-(b/d)
, 2]*EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/b, x] /; FreeQ[{b, c, d, e, f}, x] &&
NeQ[d*e - c*f, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !LtQ[-(b/d), 0]

Rule 117

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[1 + (d*x)/c]
*Sqrt[1 + (f*x)/e])/(Sqrt[c + d*x]*Sqrt[e + f*x]), Int[1/(Sqrt[b*x]*Sqrt[1 + (d*x)/c]*Sqrt[1 + (f*x)/e]), x],
x] /; FreeQ[{b, c, d, e, f}, x] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 116

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d), 2]*E
llipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/(b*Sqrt[e]), x] /; FreeQ[{b, c, d, e, f}, x]
&& GtQ[c, 0] && GtQ[e, 0] && (PosQ[-(b/d)] || NegQ[-(b/f)])

Rubi steps

\begin{align*} \int \frac{(d+e x)^{3/2}}{\left (b x+c x^2\right )^{5/2}} \, dx &=-\frac{2 \sqrt{d+e x} (b d+(2 c d-b e) x)}{3 b^2 \left (b x+c x^2\right )^{3/2}}-\frac{2 \int \frac{\frac{1}{2} d (8 c d-5 b e)+\frac{3}{2} e (2 c d-b e) x}{\sqrt{d+e x} \left (b x+c x^2\right )^{3/2}} \, dx}{3 b^2}\\ &=-\frac{2 \sqrt{d+e x} (b d+(2 c d-b e) x)}{3 b^2 \left (b x+c x^2\right )^{3/2}}+\frac{2 \sqrt{d+e x} (b (8 c d-5 b e) (c d-b e)+8 c (c d-b e) (2 c d-b e) x)}{3 b^4 (c d-b e) \sqrt{b x+c x^2}}+\frac{4 \int \frac{-\frac{1}{4} b d e (8 c d-3 b e) (c d-b e)-2 c d e (c d-b e) (2 c d-b e) x}{\sqrt{d+e x} \sqrt{b x+c x^2}} \, dx}{3 b^4 d (c d-b e)}\\ &=-\frac{2 \sqrt{d+e x} (b d+(2 c d-b e) x)}{3 b^2 \left (b x+c x^2\right )^{3/2}}+\frac{2 \sqrt{d+e x} (b (8 c d-5 b e) (c d-b e)+8 c (c d-b e) (2 c d-b e) x)}{3 b^4 (c d-b e) \sqrt{b x+c x^2}}-\frac{(8 c (2 c d-b e)) \int \frac{\sqrt{d+e x}}{\sqrt{b x+c x^2}} \, dx}{3 b^4}+\frac{((4 c d-3 b e) (4 c d-b e)) \int \frac{1}{\sqrt{d+e x} \sqrt{b x+c x^2}} \, dx}{3 b^4}\\ &=-\frac{2 \sqrt{d+e x} (b d+(2 c d-b e) x)}{3 b^2 \left (b x+c x^2\right )^{3/2}}+\frac{2 \sqrt{d+e x} (b (8 c d-5 b e) (c d-b e)+8 c (c d-b e) (2 c d-b e) x)}{3 b^4 (c d-b e) \sqrt{b x+c x^2}}-\frac{\left (8 c (2 c d-b e) \sqrt{x} \sqrt{b+c x}\right ) \int \frac{\sqrt{d+e x}}{\sqrt{x} \sqrt{b+c x}} \, dx}{3 b^4 \sqrt{b x+c x^2}}+\frac{\left ((4 c d-3 b e) (4 c d-b e) \sqrt{x} \sqrt{b+c x}\right ) \int \frac{1}{\sqrt{x} \sqrt{b+c x} \sqrt{d+e x}} \, dx}{3 b^4 \sqrt{b x+c x^2}}\\ &=-\frac{2 \sqrt{d+e x} (b d+(2 c d-b e) x)}{3 b^2 \left (b x+c x^2\right )^{3/2}}+\frac{2 \sqrt{d+e x} (b (8 c d-5 b e) (c d-b e)+8 c (c d-b e) (2 c d-b e) x)}{3 b^4 (c d-b e) \sqrt{b x+c x^2}}-\frac{\left (8 c (2 c d-b e) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{d+e x}\right ) \int \frac{\sqrt{1+\frac{e x}{d}}}{\sqrt{x} \sqrt{1+\frac{c x}{b}}} \, dx}{3 b^4 \sqrt{1+\frac{e x}{d}} \sqrt{b x+c x^2}}+\frac{\left ((4 c d-3 b e) (4 c d-b e) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}}\right ) \int \frac{1}{\sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}}} \, dx}{3 b^4 \sqrt{d+e x} \sqrt{b x+c x^2}}\\ &=-\frac{2 \sqrt{d+e x} (b d+(2 c d-b e) x)}{3 b^2 \left (b x+c x^2\right )^{3/2}}+\frac{2 \sqrt{d+e x} (b (8 c d-5 b e) (c d-b e)+8 c (c d-b e) (2 c d-b e) x)}{3 b^4 (c d-b e) \sqrt{b x+c x^2}}-\frac{16 \sqrt{c} (2 c d-b e) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{3 (-b)^{7/2} \sqrt{1+\frac{e x}{d}} \sqrt{b x+c x^2}}+\frac{2 (4 c d-3 b e) (4 c d-b e) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}} F\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{3 (-b)^{7/2} \sqrt{c} \sqrt{d+e x} \sqrt{b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 1.15048, size = 290, normalized size = 0.84 $\frac{2 \left (i c e x^{5/2} \sqrt{\frac{b}{c}} \sqrt{\frac{b}{c x}+1} \sqrt{\frac{d}{e x}+1} (8 c d-5 b e) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{b}{c}}}{\sqrt{x}}\right ),\frac{c d}{b e}\right )+\frac{(d+e x) \left (b^2 c x (6 d-13 e x)+b^3 (-(d+4 e x))-8 b c^2 x^2 (e x-3 d)+16 c^3 d x^3\right )}{b+c x}+8 i c e x^{5/2} \sqrt{\frac{b}{c}} \sqrt{\frac{b}{c x}+1} \sqrt{\frac{d}{e x}+1} (b e-2 c d) E\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{b}{c}}}{\sqrt{x}}\right )|\frac{c d}{b e}\right )-8 x (b+c x) (d+e x) (2 c d-b e)\right )}{3 b^4 x \sqrt{x (b+c x)} \sqrt{d+e x}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^(3/2)/(b*x + c*x^2)^(5/2),x]

[Out]

(2*(-8*(2*c*d - b*e)*x*(b + c*x)*(d + e*x) + ((d + e*x)*(16*c^3*d*x^3 + b^2*c*x*(6*d - 13*e*x) - 8*b*c^2*x^2*(
-3*d + e*x) - b^3*(d + 4*e*x)))/(b + c*x) + (8*I)*Sqrt[b/c]*c*e*(-2*c*d + b*e)*Sqrt[1 + b/(c*x)]*Sqrt[1 + d/(e
*x)]*x^(5/2)*EllipticE[I*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d)/(b*e)] + I*Sqrt[b/c]*c*e*(8*c*d - 5*b*e)*Sqrt[1 + b
/(c*x)]*Sqrt[1 + d/(e*x)]*x^(5/2)*EllipticF[I*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d)/(b*e)]))/(3*b^4*x*Sqrt[x*(b +
c*x)]*Sqrt[d + e*x])

________________________________________________________________________________________

Maple [B]  time = 0.313, size = 1099, normalized size = 3.2 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)/(c*x^2+b*x)^(5/2),x)

[Out]

2/3*(3*x^2*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e
-c*d))^(1/2))*b^3*c*e^2-16*x^2*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticF(((c*x+b
)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^2*c^2*d*e+16*x^2*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)^(
1/2)*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b*c^3*d^2-8*x^2*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d
))^(1/2)*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^3*c*e^2+24*x^2*((c*x+b)/b)^(1/2)*
(-(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^2*c^2*d*e-16*
x^2*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^
(1/2))*b*c^3*d^2+3*x*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticF(((c*x+b)/b)^(1/2)
,(b*e/(b*e-c*d))^(1/2))*b^4*e^2-16*x*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticF((
(c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^3*c*d*e+16*x*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)
^(1/2)*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^2*c^2*d^2-8*x*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c
*d))^(1/2)*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^4*e^2+24*x*((c*x+b)/b)^(1/2)*(-
(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^3*c*d*e-16*x*((
c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))
*b^2*c^2*d^2-8*x^4*b*c^3*e^2+16*x^4*c^4*d*e-13*x^3*b^2*c^2*e^2+16*x^3*b*c^3*d*e+16*x^3*c^4*d^2-4*x^2*b^3*c*e^2
-7*x^2*b^2*c^2*d*e+24*x^2*b*c^3*d^2-5*x*b^3*c*d*e+6*x*b^2*c^2*d^2-b^3*c*d^2)/x^2*(x*(c*x+b))^(1/2)/b^4/c/(c*x+
b)^2/(e*x+d)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{3}{2}}}{{\left (c x^{2} + b x\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(c*x^2+b*x)^(5/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(3/2)/(c*x^2 + b*x)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + b x}{\left (e x + d\right )}^{\frac{3}{2}}}{c^{3} x^{6} + 3 \, b c^{2} x^{5} + 3 \, b^{2} c x^{4} + b^{3} x^{3}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(c*x^2+b*x)^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x)*(e*x + d)^(3/2)/(c^3*x^6 + 3*b*c^2*x^5 + 3*b^2*c*x^4 + b^3*x^3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)/(c*x**2+b*x)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{3}{2}}}{{\left (c x^{2} + b x\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(c*x^2+b*x)^(5/2),x, algorithm="giac")

[Out]

integrate((e*x + d)^(3/2)/(c*x^2 + b*x)^(5/2), x)