3.419 $$\int \frac{1}{(d+e x)^{3/2} (b x+c x^2)^{3/2}} \, dx$$

Optimal. Leaf size=370 $-\frac{2 \sqrt{c} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{\frac{e x}{d}+1} (2 c d-b e) \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right ),\frac{b e}{c d}\right )}{(-b)^{3/2} d \sqrt{b x+c x^2} \sqrt{d+e x} (c d-b e)}-\frac{4 e \sqrt{b x+c x^2} \left (b^2 e^2-b c d e+c^2 d^2\right )}{b^2 d^2 \sqrt{d+e x} (c d-b e)^2}+\frac{4 \sqrt{c} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{d+e x} \left (b^2 e^2-b c d e+c^2 d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{(-b)^{3/2} d^2 \sqrt{b x+c x^2} \sqrt{\frac{e x}{d}+1} (c d-b e)^2}-\frac{2 (c x (2 c d-b e)+b (c d-b e))}{b^2 d \sqrt{b x+c x^2} \sqrt{d+e x} (c d-b e)}$

[Out]

(-2*(b*(c*d - b*e) + c*(2*c*d - b*e)*x))/(b^2*d*(c*d - b*e)*Sqrt[d + e*x]*Sqrt[b*x + c*x^2]) - (4*e*(c^2*d^2 -
b*c*d*e + b^2*e^2)*Sqrt[b*x + c*x^2])/(b^2*d^2*(c*d - b*e)^2*Sqrt[d + e*x]) + (4*Sqrt[c]*(c^2*d^2 - b*c*d*e +
b^2*e^2)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d + e*x]*EllipticE[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/
((-b)^(3/2)*d^2*(c*d - b*e)^2*Sqrt[1 + (e*x)/d]*Sqrt[b*x + c*x^2]) - (2*Sqrt[c]*(2*c*d - b*e)*Sqrt[x]*Sqrt[1 +
(c*x)/b]*Sqrt[1 + (e*x)/d]*EllipticF[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/((-b)^(3/2)*d*(c*d - b
*e)*Sqrt[d + e*x]*Sqrt[b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.387177, antiderivative size = 370, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 23, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.348, Rules used = {740, 834, 843, 715, 112, 110, 117, 116} $-\frac{4 e \sqrt{b x+c x^2} \left (b^2 e^2-b c d e+c^2 d^2\right )}{b^2 d^2 \sqrt{d+e x} (c d-b e)^2}+\frac{4 \sqrt{c} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{d+e x} \left (b^2 e^2-b c d e+c^2 d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{(-b)^{3/2} d^2 \sqrt{b x+c x^2} \sqrt{\frac{e x}{d}+1} (c d-b e)^2}-\frac{2 (c x (2 c d-b e)+b (c d-b e))}{b^2 d \sqrt{b x+c x^2} \sqrt{d+e x} (c d-b e)}-\frac{2 \sqrt{c} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{\frac{e x}{d}+1} (2 c d-b e) F\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{(-b)^{3/2} d \sqrt{b x+c x^2} \sqrt{d+e x} (c d-b e)}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((d + e*x)^(3/2)*(b*x + c*x^2)^(3/2)),x]

[Out]

(-2*(b*(c*d - b*e) + c*(2*c*d - b*e)*x))/(b^2*d*(c*d - b*e)*Sqrt[d + e*x]*Sqrt[b*x + c*x^2]) - (4*e*(c^2*d^2 -
b*c*d*e + b^2*e^2)*Sqrt[b*x + c*x^2])/(b^2*d^2*(c*d - b*e)^2*Sqrt[d + e*x]) + (4*Sqrt[c]*(c^2*d^2 - b*c*d*e +
b^2*e^2)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d + e*x]*EllipticE[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/
((-b)^(3/2)*d^2*(c*d - b*e)^2*Sqrt[1 + (e*x)/d]*Sqrt[b*x + c*x^2]) - (2*Sqrt[c]*(2*c*d - b*e)*Sqrt[x]*Sqrt[1 +
(c*x)/b]*Sqrt[1 + (e*x)/d]*EllipticF[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/((-b)^(3/2)*d*(c*d - b
*e)*Sqrt[d + e*x]*Sqrt[b*x + c*x^2])

Rule 740

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e
+ a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*Simp[b*c*d*e*(2*p - m
+ 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x
, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b
*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 834

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m
+ 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1)
+ b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 715

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(Sqrt[x]*Sqrt[b + c*x])/Sqrt[
b*x + c*x^2], Int[(d + e*x)^m/(Sqrt[x]*Sqrt[b + c*x]), x], x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0] &
& NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 112

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[e + f*x]*Sqrt[
1 + (d*x)/c])/(Sqrt[c + d*x]*Sqrt[1 + (f*x)/e]), Int[Sqrt[1 + (f*x)/e]/(Sqrt[b*x]*Sqrt[1 + (d*x)/c]), x], x] /
; FreeQ[{b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 110

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Sqrt[e]*Rt[-(b/d)
, 2]*EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/b, x] /; FreeQ[{b, c, d, e, f}, x] &&
NeQ[d*e - c*f, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !LtQ[-(b/d), 0]

Rule 117

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[1 + (d*x)/c]
*Sqrt[1 + (f*x)/e])/(Sqrt[c + d*x]*Sqrt[e + f*x]), Int[1/(Sqrt[b*x]*Sqrt[1 + (d*x)/c]*Sqrt[1 + (f*x)/e]), x],
x] /; FreeQ[{b, c, d, e, f}, x] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 116

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d), 2]*E
llipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/(b*Sqrt[e]), x] /; FreeQ[{b, c, d, e, f}, x]
&& GtQ[c, 0] && GtQ[e, 0] && (PosQ[-(b/d)] || NegQ[-(b/f)])

Rubi steps

\begin{align*} \int \frac{1}{(d+e x)^{3/2} \left (b x+c x^2\right )^{3/2}} \, dx &=-\frac{2 (b (c d-b e)+c (2 c d-b e) x)}{b^2 d (c d-b e) \sqrt{d+e x} \sqrt{b x+c x^2}}-\frac{2 \int \frac{\frac{1}{2} b e (c d-2 b e)+\frac{1}{2} c e (2 c d-b e) x}{(d+e x)^{3/2} \sqrt{b x+c x^2}} \, dx}{b^2 d (c d-b e)}\\ &=-\frac{2 (b (c d-b e)+c (2 c d-b e) x)}{b^2 d (c d-b e) \sqrt{d+e x} \sqrt{b x+c x^2}}-\frac{4 e \left (c^2 d^2-b c d e+b^2 e^2\right ) \sqrt{b x+c x^2}}{b^2 d^2 (c d-b e)^2 \sqrt{d+e x}}+\frac{4 \int \frac{\frac{1}{4} b c d e (c d+b e)+\frac{1}{2} c e \left (c^2 d^2-b c d e+b^2 e^2\right ) x}{\sqrt{d+e x} \sqrt{b x+c x^2}} \, dx}{b^2 d^2 (c d-b e)^2}\\ &=-\frac{2 (b (c d-b e)+c (2 c d-b e) x)}{b^2 d (c d-b e) \sqrt{d+e x} \sqrt{b x+c x^2}}-\frac{4 e \left (c^2 d^2-b c d e+b^2 e^2\right ) \sqrt{b x+c x^2}}{b^2 d^2 (c d-b e)^2 \sqrt{d+e x}}-\frac{(c (2 c d-b e)) \int \frac{1}{\sqrt{d+e x} \sqrt{b x+c x^2}} \, dx}{b^2 d (c d-b e)}+\frac{\left (2 c \left (c^2 d^2-b c d e+b^2 e^2\right )\right ) \int \frac{\sqrt{d+e x}}{\sqrt{b x+c x^2}} \, dx}{b^2 d^2 (c d-b e)^2}\\ &=-\frac{2 (b (c d-b e)+c (2 c d-b e) x)}{b^2 d (c d-b e) \sqrt{d+e x} \sqrt{b x+c x^2}}-\frac{4 e \left (c^2 d^2-b c d e+b^2 e^2\right ) \sqrt{b x+c x^2}}{b^2 d^2 (c d-b e)^2 \sqrt{d+e x}}-\frac{\left (c (2 c d-b e) \sqrt{x} \sqrt{b+c x}\right ) \int \frac{1}{\sqrt{x} \sqrt{b+c x} \sqrt{d+e x}} \, dx}{b^2 d (c d-b e) \sqrt{b x+c x^2}}+\frac{\left (2 c \left (c^2 d^2-b c d e+b^2 e^2\right ) \sqrt{x} \sqrt{b+c x}\right ) \int \frac{\sqrt{d+e x}}{\sqrt{x} \sqrt{b+c x}} \, dx}{b^2 d^2 (c d-b e)^2 \sqrt{b x+c x^2}}\\ &=-\frac{2 (b (c d-b e)+c (2 c d-b e) x)}{b^2 d (c d-b e) \sqrt{d+e x} \sqrt{b x+c x^2}}-\frac{4 e \left (c^2 d^2-b c d e+b^2 e^2\right ) \sqrt{b x+c x^2}}{b^2 d^2 (c d-b e)^2 \sqrt{d+e x}}+\frac{\left (2 c \left (c^2 d^2-b c d e+b^2 e^2\right ) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{d+e x}\right ) \int \frac{\sqrt{1+\frac{e x}{d}}}{\sqrt{x} \sqrt{1+\frac{c x}{b}}} \, dx}{b^2 d^2 (c d-b e)^2 \sqrt{1+\frac{e x}{d}} \sqrt{b x+c x^2}}-\frac{\left (c (2 c d-b e) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}}\right ) \int \frac{1}{\sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}}} \, dx}{b^2 d (c d-b e) \sqrt{d+e x} \sqrt{b x+c x^2}}\\ &=-\frac{2 (b (c d-b e)+c (2 c d-b e) x)}{b^2 d (c d-b e) \sqrt{d+e x} \sqrt{b x+c x^2}}-\frac{4 e \left (c^2 d^2-b c d e+b^2 e^2\right ) \sqrt{b x+c x^2}}{b^2 d^2 (c d-b e)^2 \sqrt{d+e x}}+\frac{4 \sqrt{c} \left (c^2 d^2-b c d e+b^2 e^2\right ) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{(-b)^{3/2} d^2 (c d-b e)^2 \sqrt{1+\frac{e x}{d}} \sqrt{b x+c x^2}}-\frac{2 \sqrt{c} (2 c d-b e) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}} F\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{(-b)^{3/2} d (c d-b e) \sqrt{d+e x} \sqrt{b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.994208, size = 266, normalized size = 0.72 $\frac{-2 i c e x^{3/2} \sqrt{\frac{b}{c}} \sqrt{\frac{b}{c x}+1} \sqrt{\frac{d}{e x}+1} \left (2 b^2 e^2-3 b c d e+c^2 d^2\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{b}{c}}}{\sqrt{x}}\right ),\frac{c d}{b e}\right )+4 i c e x^{3/2} \sqrt{\frac{b}{c}} \sqrt{\frac{b}{c x}+1} \sqrt{\frac{d}{e x}+1} \left (b^2 e^2-b c d e+c^2 d^2\right ) E\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{b}{c}}}{\sqrt{x}}\right )|\frac{c d}{b e}\right )+2 b d \left (b^2 e^2+b c e^2 x+c^2 d (d+e x)\right )}{b^2 d^2 \sqrt{x (b+c x)} \sqrt{d+e x} (c d-b e)^2}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((d + e*x)^(3/2)*(b*x + c*x^2)^(3/2)),x]

[Out]

(2*b*d*(b^2*e^2 + b*c*e^2*x + c^2*d*(d + e*x)) + (4*I)*Sqrt[b/c]*c*e*(c^2*d^2 - b*c*d*e + b^2*e^2)*Sqrt[1 + b/
(c*x)]*Sqrt[1 + d/(e*x)]*x^(3/2)*EllipticE[I*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d)/(b*e)] - (2*I)*Sqrt[b/c]*c*e*(c
^2*d^2 - 3*b*c*d*e + 2*b^2*e^2)*Sqrt[1 + b/(c*x)]*Sqrt[1 + d/(e*x)]*x^(3/2)*EllipticF[I*ArcSinh[Sqrt[b/c]/Sqrt
[x]], (c*d)/(b*e)])/(b^2*d^2*(c*d - b*e)^2*Sqrt[x*(b + c*x)]*Sqrt[d + e*x])

________________________________________________________________________________________

Maple [B]  time = 0.296, size = 698, normalized size = 1.9 \begin{align*} -2\,{\frac{\sqrt{x \left ( cx+b \right ) }}{x \left ( cx+b \right ) \left ( be-cd \right ) ^{2}c{b}^{2}{d}^{2}\sqrt{ex+d}} \left ( 2\,\sqrt{-{\frac{cx}{b}}}{\it EllipticE} \left ( \sqrt{{\frac{cx+b}{b}}},\sqrt{{\frac{be}{be-cd}}} \right ) \sqrt{{\frac{cx+b}{b}}}\sqrt{-{\frac{c \left ( ex+d \right ) }{be-cd}}}{b}^{4}{e}^{3}-4\,\sqrt{-{\frac{cx}{b}}}{\it EllipticE} \left ( \sqrt{{\frac{cx+b}{b}}},\sqrt{{\frac{be}{be-cd}}} \right ) \sqrt{{\frac{cx+b}{b}}}\sqrt{-{\frac{c \left ( ex+d \right ) }{be-cd}}}{b}^{3}cd{e}^{2}+4\,\sqrt{-{\frac{cx}{b}}}{\it EllipticE} \left ( \sqrt{{\frac{cx+b}{b}}},\sqrt{{\frac{be}{be-cd}}} \right ) \sqrt{{\frac{cx+b}{b}}}\sqrt{-{\frac{c \left ( ex+d \right ) }{be-cd}}}{b}^{2}{c}^{2}{d}^{2}e-2\,\sqrt{-{\frac{cx}{b}}}{\it EllipticE} \left ( \sqrt{{\frac{cx+b}{b}}},\sqrt{{\frac{be}{be-cd}}} \right ) \sqrt{{\frac{cx+b}{b}}}\sqrt{-{\frac{c \left ( ex+d \right ) }{be-cd}}}b{c}^{3}{d}^{3}+\sqrt{-{\frac{cx}{b}}}{\it EllipticF} \left ( \sqrt{{\frac{cx+b}{b}}},\sqrt{{\frac{be}{be-cd}}} \right ) \sqrt{{\frac{cx+b}{b}}}\sqrt{-{\frac{c \left ( ex+d \right ) }{be-cd}}}{b}^{3}cd{e}^{2}-3\,\sqrt{-{\frac{cx}{b}}}{\it EllipticF} \left ( \sqrt{{\frac{cx+b}{b}}},\sqrt{{\frac{be}{be-cd}}} \right ) \sqrt{{\frac{cx+b}{b}}}\sqrt{-{\frac{c \left ( ex+d \right ) }{be-cd}}}{b}^{2}{c}^{2}{d}^{2}e+2\,\sqrt{-{\frac{cx}{b}}}{\it EllipticF} \left ( \sqrt{{\frac{cx+b}{b}}},\sqrt{{\frac{be}{be-cd}}} \right ) \sqrt{{\frac{cx+b}{b}}}\sqrt{-{\frac{c \left ( ex+d \right ) }{be-cd}}}b{c}^{3}{d}^{3}+2\,{x}^{2}{b}^{2}{c}^{2}{e}^{3}-2\,{x}^{2}b{c}^{3}d{e}^{2}+2\,{x}^{2}{c}^{4}{d}^{2}e+2\,x{b}^{3}c{e}^{3}-x{b}^{2}{c}^{2}d{e}^{2}-xb{c}^{3}{d}^{2}e+2\,x{c}^{4}{d}^{3}+{b}^{3}cd{e}^{2}-2\,{b}^{2}{c}^{2}{d}^{2}e+b{c}^{3}{d}^{3} \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(3/2)/(c*x^2+b*x)^(3/2),x)

[Out]

-2/x*(2*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c
*d))^(1/2)*b^4*e^3-4*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*((c*x+b)/b)^(1/2)*(-(e*
x+d)*c/(b*e-c*d))^(1/2)*b^3*c*d*e^2+4*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*((c*x+
b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*b^2*c^2*d^2*e-2*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-
c*d))^(1/2))*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*b*c^3*d^3+(-c*x/b)^(1/2)*EllipticF(((c*x+b)/b)^(1/
2),(b*e/(b*e-c*d))^(1/2))*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*b^3*c*d*e^2-3*(-c*x/b)^(1/2)*Elliptic
F(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*b^2*c^2*d^2*e+2*(-c*
x/b)^(1/2)*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*b
*c^3*d^3+2*x^2*b^2*c^2*e^3-2*x^2*b*c^3*d*e^2+2*x^2*c^4*d^2*e+2*x*b^3*c*e^3-x*b^2*c^2*d*e^2-x*b*c^3*d^2*e+2*x*c
^4*d^3+b^3*c*d*e^2-2*b^2*c^2*d^2*e+b*c^3*d^3)*(x*(c*x+b))^(1/2)/(c*x+b)/(b*e-c*d)^2/c/b^2/d^2/(e*x+d)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{2} + b x\right )}^{\frac{3}{2}}{\left (e x + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((c*x^2 + b*x)^(3/2)*(e*x + d)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + b x} \sqrt{e x + d}}{c^{2} e^{2} x^{6} + b^{2} d^{2} x^{2} + 2 \,{\left (c^{2} d e + b c e^{2}\right )} x^{5} +{\left (c^{2} d^{2} + 4 \, b c d e + b^{2} e^{2}\right )} x^{4} + 2 \,{\left (b c d^{2} + b^{2} d e\right )} x^{3}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x)*sqrt(e*x + d)/(c^2*e^2*x^6 + b^2*d^2*x^2 + 2*(c^2*d*e + b*c*e^2)*x^5 + (c^2*d^2 + 4
*b*c*d*e + b^2*e^2)*x^4 + 2*(b*c*d^2 + b^2*d*e)*x^3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (x \left (b + c x\right )\right )^{\frac{3}{2}} \left (d + e x\right )^{\frac{3}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(3/2)/(c*x**2+b*x)**(3/2),x)

[Out]

Integral(1/((x*(b + c*x))**(3/2)*(d + e*x)**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{2} + b x\right )}^{\frac{3}{2}}{\left (e x + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((c*x^2 + b*x)^(3/2)*(e*x + d)^(3/2)), x)