### 3.413 $$\int \frac{1}{(d+e x)^{7/2} \sqrt{b x+c x^2}} \, dx$$

Optimal. Leaf size=403 $-\frac{8 \sqrt{-b} \sqrt{c} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{\frac{e x}{d}+1} (2 c d-b e) \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right ),\frac{b e}{c d}\right )}{15 d^2 \sqrt{b x+c x^2} \sqrt{d+e x} (c d-b e)^2}-\frac{2 e \sqrt{b x+c x^2} \left (8 b^2 e^2-23 b c d e+23 c^2 d^2\right )}{15 d^3 \sqrt{d+e x} (c d-b e)^3}+\frac{2 \sqrt{-b} \sqrt{c} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{d+e x} \left (8 b^2 e^2-23 b c d e+23 c^2 d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{15 d^3 \sqrt{b x+c x^2} \sqrt{\frac{e x}{d}+1} (c d-b e)^3}-\frac{8 e \sqrt{b x+c x^2} (2 c d-b e)}{15 d^2 (d+e x)^{3/2} (c d-b e)^2}-\frac{2 e \sqrt{b x+c x^2}}{5 d (d+e x)^{5/2} (c d-b e)}$

[Out]

(-2*e*Sqrt[b*x + c*x^2])/(5*d*(c*d - b*e)*(d + e*x)^(5/2)) - (8*e*(2*c*d - b*e)*Sqrt[b*x + c*x^2])/(15*d^2*(c*
d - b*e)^2*(d + e*x)^(3/2)) - (2*e*(23*c^2*d^2 - 23*b*c*d*e + 8*b^2*e^2)*Sqrt[b*x + c*x^2])/(15*d^3*(c*d - b*e
)^3*Sqrt[d + e*x]) + (2*Sqrt[-b]*Sqrt[c]*(23*c^2*d^2 - 23*b*c*d*e + 8*b^2*e^2)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[
d + e*x]*EllipticE[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(15*d^3*(c*d - b*e)^3*Sqrt[1 + (e*x)/d]*S
qrt[b*x + c*x^2]) - (8*Sqrt[-b]*Sqrt[c]*(2*c*d - b*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[1 + (e*x)/d]*EllipticF[Ar
cSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(15*d^2*(c*d - b*e)^2*Sqrt[d + e*x]*Sqrt[b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.465188, antiderivative size = 403, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 8, integrand size = 23, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.348, Rules used = {744, 834, 843, 715, 112, 110, 117, 116} $-\frac{2 e \sqrt{b x+c x^2} \left (8 b^2 e^2-23 b c d e+23 c^2 d^2\right )}{15 d^3 \sqrt{d+e x} (c d-b e)^3}+\frac{2 \sqrt{-b} \sqrt{c} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{d+e x} \left (8 b^2 e^2-23 b c d e+23 c^2 d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{15 d^3 \sqrt{b x+c x^2} \sqrt{\frac{e x}{d}+1} (c d-b e)^3}-\frac{8 e \sqrt{b x+c x^2} (2 c d-b e)}{15 d^2 (d+e x)^{3/2} (c d-b e)^2}-\frac{8 \sqrt{-b} \sqrt{c} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{\frac{e x}{d}+1} (2 c d-b e) F\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{15 d^2 \sqrt{b x+c x^2} \sqrt{d+e x} (c d-b e)^2}-\frac{2 e \sqrt{b x+c x^2}}{5 d (d+e x)^{5/2} (c d-b e)}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((d + e*x)^(7/2)*Sqrt[b*x + c*x^2]),x]

[Out]

(-2*e*Sqrt[b*x + c*x^2])/(5*d*(c*d - b*e)*(d + e*x)^(5/2)) - (8*e*(2*c*d - b*e)*Sqrt[b*x + c*x^2])/(15*d^2*(c*
d - b*e)^2*(d + e*x)^(3/2)) - (2*e*(23*c^2*d^2 - 23*b*c*d*e + 8*b^2*e^2)*Sqrt[b*x + c*x^2])/(15*d^3*(c*d - b*e
)^3*Sqrt[d + e*x]) + (2*Sqrt[-b]*Sqrt[c]*(23*c^2*d^2 - 23*b*c*d*e + 8*b^2*e^2)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[
d + e*x]*EllipticE[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(15*d^3*(c*d - b*e)^3*Sqrt[1 + (e*x)/d]*S
qrt[b*x + c*x^2]) - (8*Sqrt[-b]*Sqrt[c]*(2*c*d - b*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[1 + (e*x)/d]*EllipticF[Ar
cSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(15*d^2*(c*d - b*e)^2*Sqrt[d + e*x]*Sqrt[b*x + c*x^2])

Rule 744

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m + 1)
*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m + 1)*(c*d^2 - b*d*e + a*e^2)),
Int[(d + e*x)^(m + 1)*Simp[c*d*(m + 1) - b*e*(m + p + 2) - c*e*(m + 2*p + 3)*x, x]*(a + b*x + c*x^2)^p, x], x]
/; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e
, 0] && NeQ[m, -1] && ((LtQ[m, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]) || (SumSimplerQ[m, 1] && IntegerQ
[p]) || ILtQ[Simplify[m + 2*p + 3], 0])

Rule 834

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m
+ 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1)
+ b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 715

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(Sqrt[x]*Sqrt[b + c*x])/Sqrt[
b*x + c*x^2], Int[(d + e*x)^m/(Sqrt[x]*Sqrt[b + c*x]), x], x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0] &
& NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 112

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[e + f*x]*Sqrt[
1 + (d*x)/c])/(Sqrt[c + d*x]*Sqrt[1 + (f*x)/e]), Int[Sqrt[1 + (f*x)/e]/(Sqrt[b*x]*Sqrt[1 + (d*x)/c]), x], x] /
; FreeQ[{b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 110

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Sqrt[e]*Rt[-(b/d)
, 2]*EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/b, x] /; FreeQ[{b, c, d, e, f}, x] &&
NeQ[d*e - c*f, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !LtQ[-(b/d), 0]

Rule 117

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[1 + (d*x)/c]
*Sqrt[1 + (f*x)/e])/(Sqrt[c + d*x]*Sqrt[e + f*x]), Int[1/(Sqrt[b*x]*Sqrt[1 + (d*x)/c]*Sqrt[1 + (f*x)/e]), x],
x] /; FreeQ[{b, c, d, e, f}, x] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 116

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d), 2]*E
llipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/(b*Sqrt[e]), x] /; FreeQ[{b, c, d, e, f}, x]
&& GtQ[c, 0] && GtQ[e, 0] && (PosQ[-(b/d)] || NegQ[-(b/f)])

Rubi steps

\begin{align*} \int \frac{1}{(d+e x)^{7/2} \sqrt{b x+c x^2}} \, dx &=-\frac{2 e \sqrt{b x+c x^2}}{5 d (c d-b e) (d+e x)^{5/2}}-\frac{2 \int \frac{\frac{1}{2} (-5 c d+4 b e)+\frac{3 c e x}{2}}{(d+e x)^{5/2} \sqrt{b x+c x^2}} \, dx}{5 d (c d-b e)}\\ &=-\frac{2 e \sqrt{b x+c x^2}}{5 d (c d-b e) (d+e x)^{5/2}}-\frac{8 e (2 c d-b e) \sqrt{b x+c x^2}}{15 d^2 (c d-b e)^2 (d+e x)^{3/2}}+\frac{4 \int \frac{\frac{1}{4} \left (15 c^2 d^2-19 b c d e+8 b^2 e^2\right )-c e (2 c d-b e) x}{(d+e x)^{3/2} \sqrt{b x+c x^2}} \, dx}{15 d^2 (c d-b e)^2}\\ &=-\frac{2 e \sqrt{b x+c x^2}}{5 d (c d-b e) (d+e x)^{5/2}}-\frac{8 e (2 c d-b e) \sqrt{b x+c x^2}}{15 d^2 (c d-b e)^2 (d+e x)^{3/2}}-\frac{2 e \left (23 c^2 d^2-23 b c d e+8 b^2 e^2\right ) \sqrt{b x+c x^2}}{15 d^3 (c d-b e)^3 \sqrt{d+e x}}-\frac{8 \int \frac{-\frac{1}{8} c d \left (15 c^2 d^2-11 b c d e+4 b^2 e^2\right )-\frac{1}{8} c e \left (23 c^2 d^2-23 b c d e+8 b^2 e^2\right ) x}{\sqrt{d+e x} \sqrt{b x+c x^2}} \, dx}{15 d^3 (c d-b e)^3}\\ &=-\frac{2 e \sqrt{b x+c x^2}}{5 d (c d-b e) (d+e x)^{5/2}}-\frac{8 e (2 c d-b e) \sqrt{b x+c x^2}}{15 d^2 (c d-b e)^2 (d+e x)^{3/2}}-\frac{2 e \left (23 c^2 d^2-23 b c d e+8 b^2 e^2\right ) \sqrt{b x+c x^2}}{15 d^3 (c d-b e)^3 \sqrt{d+e x}}-\frac{(4 c (2 c d-b e)) \int \frac{1}{\sqrt{d+e x} \sqrt{b x+c x^2}} \, dx}{15 d^2 (c d-b e)^2}+\frac{\left (c \left (23 c^2 d^2-23 b c d e+8 b^2 e^2\right )\right ) \int \frac{\sqrt{d+e x}}{\sqrt{b x+c x^2}} \, dx}{15 d^3 (c d-b e)^3}\\ &=-\frac{2 e \sqrt{b x+c x^2}}{5 d (c d-b e) (d+e x)^{5/2}}-\frac{8 e (2 c d-b e) \sqrt{b x+c x^2}}{15 d^2 (c d-b e)^2 (d+e x)^{3/2}}-\frac{2 e \left (23 c^2 d^2-23 b c d e+8 b^2 e^2\right ) \sqrt{b x+c x^2}}{15 d^3 (c d-b e)^3 \sqrt{d+e x}}-\frac{\left (4 c (2 c d-b e) \sqrt{x} \sqrt{b+c x}\right ) \int \frac{1}{\sqrt{x} \sqrt{b+c x} \sqrt{d+e x}} \, dx}{15 d^2 (c d-b e)^2 \sqrt{b x+c x^2}}+\frac{\left (c \left (23 c^2 d^2-23 b c d e+8 b^2 e^2\right ) \sqrt{x} \sqrt{b+c x}\right ) \int \frac{\sqrt{d+e x}}{\sqrt{x} \sqrt{b+c x}} \, dx}{15 d^3 (c d-b e)^3 \sqrt{b x+c x^2}}\\ &=-\frac{2 e \sqrt{b x+c x^2}}{5 d (c d-b e) (d+e x)^{5/2}}-\frac{8 e (2 c d-b e) \sqrt{b x+c x^2}}{15 d^2 (c d-b e)^2 (d+e x)^{3/2}}-\frac{2 e \left (23 c^2 d^2-23 b c d e+8 b^2 e^2\right ) \sqrt{b x+c x^2}}{15 d^3 (c d-b e)^3 \sqrt{d+e x}}+\frac{\left (c \left (23 c^2 d^2-23 b c d e+8 b^2 e^2\right ) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{d+e x}\right ) \int \frac{\sqrt{1+\frac{e x}{d}}}{\sqrt{x} \sqrt{1+\frac{c x}{b}}} \, dx}{15 d^3 (c d-b e)^3 \sqrt{1+\frac{e x}{d}} \sqrt{b x+c x^2}}-\frac{\left (4 c (2 c d-b e) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}}\right ) \int \frac{1}{\sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}}} \, dx}{15 d^2 (c d-b e)^2 \sqrt{d+e x} \sqrt{b x+c x^2}}\\ &=-\frac{2 e \sqrt{b x+c x^2}}{5 d (c d-b e) (d+e x)^{5/2}}-\frac{8 e (2 c d-b e) \sqrt{b x+c x^2}}{15 d^2 (c d-b e)^2 (d+e x)^{3/2}}-\frac{2 e \left (23 c^2 d^2-23 b c d e+8 b^2 e^2\right ) \sqrt{b x+c x^2}}{15 d^3 (c d-b e)^3 \sqrt{d+e x}}+\frac{2 \sqrt{-b} \sqrt{c} \left (23 c^2 d^2-23 b c d e+8 b^2 e^2\right ) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{15 d^3 (c d-b e)^3 \sqrt{1+\frac{e x}{d}} \sqrt{b x+c x^2}}-\frac{8 \sqrt{-b} \sqrt{c} (2 c d-b e) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}} F\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{15 d^2 (c d-b e)^2 \sqrt{d+e x} \sqrt{b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 1.28309, size = 381, normalized size = 0.95 $-\frac{2 \left (b e x (b+c x) \left ((d+e x)^2 \left (8 b^2 e^2-23 b c d e+23 c^2 d^2\right )+3 d^2 (c d-b e)^2+4 d (d+e x) (2 c d-b e) (c d-b e)\right )-c \sqrt{\frac{b}{c}} (d+e x)^2 \left (i x^{3/2} \sqrt{\frac{b}{c x}+1} \sqrt{\frac{d}{e x}+1} \left (27 b^2 c d e^2-8 b^3 e^3-34 b c^2 d^2 e+15 c^3 d^3\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{b}{c}}}{\sqrt{x}}\right ),\frac{c d}{b e}\right )+i b e x^{3/2} \sqrt{\frac{b}{c x}+1} \sqrt{\frac{d}{e x}+1} \left (8 b^2 e^2-23 b c d e+23 c^2 d^2\right ) E\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{b}{c}}}{\sqrt{x}}\right )|\frac{c d}{b e}\right )+\sqrt{\frac{b}{c}} (b+c x) (d+e x) \left (8 b^2 e^2-23 b c d e+23 c^2 d^2\right )\right )\right )}{15 b d^3 \sqrt{x (b+c x)} (d+e x)^{5/2} (c d-b e)^3}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((d + e*x)^(7/2)*Sqrt[b*x + c*x^2]),x]

[Out]

(-2*(b*e*x*(b + c*x)*(3*d^2*(c*d - b*e)^2 + 4*d*(c*d - b*e)*(2*c*d - b*e)*(d + e*x) + (23*c^2*d^2 - 23*b*c*d*e
+ 8*b^2*e^2)*(d + e*x)^2) - Sqrt[b/c]*c*(d + e*x)^2*(Sqrt[b/c]*(23*c^2*d^2 - 23*b*c*d*e + 8*b^2*e^2)*(b + c*x
)*(d + e*x) + I*b*e*(23*c^2*d^2 - 23*b*c*d*e + 8*b^2*e^2)*Sqrt[1 + b/(c*x)]*Sqrt[1 + d/(e*x)]*x^(3/2)*Elliptic
E[I*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d)/(b*e)] + I*(15*c^3*d^3 - 34*b*c^2*d^2*e + 27*b^2*c*d*e^2 - 8*b^3*e^3)*Sq
rt[1 + b/(c*x)]*Sqrt[1 + d/(e*x)]*x^(3/2)*EllipticF[I*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d)/(b*e)])))/(15*b*d^3*(c
*d - b*e)^3*Sqrt[x*(b + c*x)]*(d + e*x)^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.317, size = 1912, normalized size = 4.7 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(7/2)/(c*x^2+b*x)^(1/2),x)

[Out]

2/15*(x*(c*x+b))^(1/2)*(-3*x^3*b^2*c^2*d*e^4-35*x^3*b*c^3*d^2*e^3+20*x^2*b^3*c*d*e^4-43*x^2*b^2*c^2*d^2*e^3+13
*x^2*b*c^3*d^3*e^2-41*x*b^2*c^2*d^3*e^2+46*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x^2*b^2*c^2*d^2*
e^3*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)-23*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d
))^(1/2))*x^2*b*c^3*d^3*e^2*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)+8*EllipticF(((c*x+b)
/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x*b^3*c*d^2*e^3*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)
-24*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x*b^2*c^2*d^3*e^2*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e
*x+d)*c/(b*e-c*d))^(1/2)+16*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x*b*c^3*d^4*e*(-c*x/b)^(1/2)*((
c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)-62*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x*b^3*c*d^2
*e^3*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)+92*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*
d))^(1/2))*x*b^2*c^2*d^3*e^2*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)-46*EllipticE(((c*x+
b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x*b*c^3*d^4*e*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)
+4*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x^2*b^3*c*d*e^4*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+
d)*c/(b*e-c*d))^(1/2)-12*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x^2*b^2*c^2*d^2*e^3*(-c*x/b)^(1/2)
*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)+15*x*b^3*c*d^2*e^3+34*x*b*c^3*d^4*e+8*EllipticE(((c*x+b)/b)^(1
/2),(b*e/(b*e-c*d))^(1/2))*b^4*d^2*e^3*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)-23*x^4*b*
c^3*d*e^4+4*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^3*c*d^3*e^2*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*
(-(e*x+d)*c/(b*e-c*d))^(1/2)-12*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^2*c^2*d^4*e*(-c*x/b)^(1/2
)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)-31*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^3*c*d
^3*e^2*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)+46*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-
c*d))^(1/2))*b^2*c^2*d^4*e*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)+8*x^4*b^2*c^2*e^5+23*
x^4*c^4*d^2*e^3+8*x^3*b^3*c*e^5+54*x^3*c^4*d^3*e^2+34*x^2*c^4*d^4*e+16*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c
*d))^(1/2))*x*b^4*d*e^4*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)+8*EllipticF(((c*x+b)/b)^
(1/2),(b*e/(b*e-c*d))^(1/2))*x^2*b*c^3*d^3*e^2*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)-3
1*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x^2*b^3*c*d*e^4*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d
)*c/(b*e-c*d))^(1/2)+8*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x^2*b^4*e^5*(-c*x/b)^(1/2)*((c*x+b)/
b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)+8*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b*c^3*d^5*(-c*x/b)^
(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)-23*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b*c
^3*d^5*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2))/(c*x+b)/x/(b*e-c*d)^3/(e*x+d)^(5/2)/c/d^
3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{2} + b x}{\left (e x + d\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(7/2)/(c*x^2+b*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + b*x)*(e*x + d)^(7/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + b x} \sqrt{e x + d}}{c e^{4} x^{6} + b d^{4} x +{\left (4 \, c d e^{3} + b e^{4}\right )} x^{5} + 2 \,{\left (3 \, c d^{2} e^{2} + 2 \, b d e^{3}\right )} x^{4} + 2 \,{\left (2 \, c d^{3} e + 3 \, b d^{2} e^{2}\right )} x^{3} +{\left (c d^{4} + 4 \, b d^{3} e\right )} x^{2}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(7/2)/(c*x^2+b*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x)*sqrt(e*x + d)/(c*e^4*x^6 + b*d^4*x + (4*c*d*e^3 + b*e^4)*x^5 + 2*(3*c*d^2*e^2 + 2*b
*d*e^3)*x^4 + 2*(2*c*d^3*e + 3*b*d^2*e^2)*x^3 + (c*d^4 + 4*b*d^3*e)*x^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{x \left (b + c x\right )} \left (d + e x\right )^{\frac{7}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(7/2)/(c*x**2+b*x)**(1/2),x)

[Out]

Integral(1/(sqrt(x*(b + c*x))*(d + e*x)**(7/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{2} + b x}{\left (e x + d\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(7/2)/(c*x^2+b*x)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + b*x)*(e*x + d)^(7/2)), x)