### 3.391 $$\int \frac{\sqrt{b x+c x^2}}{(d+e x)^{7/2}} \, dx$$

Optimal. Leaf size=398 $\frac{2 \sqrt{-b} \sqrt{c} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{\frac{e x}{d}+1} (2 c d-b e) \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right ),\frac{b e}{c d}\right )}{15 d e^2 \sqrt{b x+c x^2} \sqrt{d+e x} (c d-b e)}+\frac{4 \sqrt{b x+c x^2} \left (b^2 e^2-b c d e+c^2 d^2\right )}{15 d^2 e \sqrt{d+e x} (c d-b e)^2}-\frac{4 \sqrt{-b} \sqrt{c} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{d+e x} \left (b^2 e^2-b c d e+c^2 d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{15 d^2 e^2 \sqrt{b x+c x^2} \sqrt{\frac{e x}{d}+1} (c d-b e)^2}+\frac{2 \sqrt{b x+c x^2} (2 c d-b e)}{15 d e (d+e x)^{3/2} (c d-b e)}-\frac{2 \sqrt{b x+c x^2}}{5 e (d+e x)^{5/2}}$

[Out]

(-2*Sqrt[b*x + c*x^2])/(5*e*(d + e*x)^(5/2)) + (2*(2*c*d - b*e)*Sqrt[b*x + c*x^2])/(15*d*e*(c*d - b*e)*(d + e*
x)^(3/2)) + (4*(c^2*d^2 - b*c*d*e + b^2*e^2)*Sqrt[b*x + c*x^2])/(15*d^2*e*(c*d - b*e)^2*Sqrt[d + e*x]) - (4*Sq
rt[-b]*Sqrt[c]*(c^2*d^2 - b*c*d*e + b^2*e^2)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d + e*x]*EllipticE[ArcSin[(Sqrt[c]
*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(15*d^2*e^2*(c*d - b*e)^2*Sqrt[1 + (e*x)/d]*Sqrt[b*x + c*x^2]) + (2*Sqrt[-b
]*Sqrt[c]*(2*c*d - b*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[1 + (e*x)/d]*EllipticF[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b
]], (b*e)/(c*d)])/(15*d*e^2*(c*d - b*e)*Sqrt[d + e*x]*Sqrt[b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.491153, antiderivative size = 398, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 8, integrand size = 23, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.348, Rules used = {732, 834, 843, 715, 112, 110, 117, 116} $\frac{4 \sqrt{b x+c x^2} \left (b^2 e^2-b c d e+c^2 d^2\right )}{15 d^2 e \sqrt{d+e x} (c d-b e)^2}-\frac{4 \sqrt{-b} \sqrt{c} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{d+e x} \left (b^2 e^2-b c d e+c^2 d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{15 d^2 e^2 \sqrt{b x+c x^2} \sqrt{\frac{e x}{d}+1} (c d-b e)^2}+\frac{2 \sqrt{-b} \sqrt{c} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{\frac{e x}{d}+1} (2 c d-b e) F\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{15 d e^2 \sqrt{b x+c x^2} \sqrt{d+e x} (c d-b e)}+\frac{2 \sqrt{b x+c x^2} (2 c d-b e)}{15 d e (d+e x)^{3/2} (c d-b e)}-\frac{2 \sqrt{b x+c x^2}}{5 e (d+e x)^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sqrt[b*x + c*x^2]/(d + e*x)^(7/2),x]

[Out]

(-2*Sqrt[b*x + c*x^2])/(5*e*(d + e*x)^(5/2)) + (2*(2*c*d - b*e)*Sqrt[b*x + c*x^2])/(15*d*e*(c*d - b*e)*(d + e*
x)^(3/2)) + (4*(c^2*d^2 - b*c*d*e + b^2*e^2)*Sqrt[b*x + c*x^2])/(15*d^2*e*(c*d - b*e)^2*Sqrt[d + e*x]) - (4*Sq
rt[-b]*Sqrt[c]*(c^2*d^2 - b*c*d*e + b^2*e^2)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d + e*x]*EllipticE[ArcSin[(Sqrt[c]
*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(15*d^2*e^2*(c*d - b*e)^2*Sqrt[1 + (e*x)/d]*Sqrt[b*x + c*x^2]) + (2*Sqrt[-b
]*Sqrt[c]*(2*c*d - b*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[1 + (e*x)/d]*EllipticF[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b
]], (b*e)/(c*d)])/(15*d*e^2*(c*d - b*e)*Sqrt[d + e*x]*Sqrt[b*x + c*x^2])

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 1)), x] - Dist[p/(e*(m + 1)), Int[(d + e*x)^(m + 1)*(b + 2*c*x)*(a + b*x + c*x^2)^
(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ
[2*c*d - b*e, 0] && GtQ[p, 0] && (IntegerQ[p] || LtQ[m, -1]) && NeQ[m, -1] &&  !ILtQ[m + 2*p + 1, 0] && IntQua
draticQ[a, b, c, d, e, m, p, x]

Rule 834

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m
+ 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1)
+ b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 715

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(Sqrt[x]*Sqrt[b + c*x])/Sqrt[
b*x + c*x^2], Int[(d + e*x)^m/(Sqrt[x]*Sqrt[b + c*x]), x], x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0] &
& NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 112

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[e + f*x]*Sqrt[
1 + (d*x)/c])/(Sqrt[c + d*x]*Sqrt[1 + (f*x)/e]), Int[Sqrt[1 + (f*x)/e]/(Sqrt[b*x]*Sqrt[1 + (d*x)/c]), x], x] /
; FreeQ[{b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 110

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Sqrt[e]*Rt[-(b/d)
, 2]*EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/b, x] /; FreeQ[{b, c, d, e, f}, x] &&
NeQ[d*e - c*f, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !LtQ[-(b/d), 0]

Rule 117

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[1 + (d*x)/c]
*Sqrt[1 + (f*x)/e])/(Sqrt[c + d*x]*Sqrt[e + f*x]), Int[1/(Sqrt[b*x]*Sqrt[1 + (d*x)/c]*Sqrt[1 + (f*x)/e]), x],
x] /; FreeQ[{b, c, d, e, f}, x] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 116

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d), 2]*E
llipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/(b*Sqrt[e]), x] /; FreeQ[{b, c, d, e, f}, x]
&& GtQ[c, 0] && GtQ[e, 0] && (PosQ[-(b/d)] || NegQ[-(b/f)])

Rubi steps

\begin{align*} \int \frac{\sqrt{b x+c x^2}}{(d+e x)^{7/2}} \, dx &=-\frac{2 \sqrt{b x+c x^2}}{5 e (d+e x)^{5/2}}+\frac{\int \frac{b+2 c x}{(d+e x)^{5/2} \sqrt{b x+c x^2}} \, dx}{5 e}\\ &=-\frac{2 \sqrt{b x+c x^2}}{5 e (d+e x)^{5/2}}+\frac{2 (2 c d-b e) \sqrt{b x+c x^2}}{15 d e (c d-b e) (d+e x)^{3/2}}-\frac{2 \int \frac{-\frac{1}{2} b (c d-2 b e)-\frac{1}{2} c (2 c d-b e) x}{(d+e x)^{3/2} \sqrt{b x+c x^2}} \, dx}{15 d e (c d-b e)}\\ &=-\frac{2 \sqrt{b x+c x^2}}{5 e (d+e x)^{5/2}}+\frac{2 (2 c d-b e) \sqrt{b x+c x^2}}{15 d e (c d-b e) (d+e x)^{3/2}}+\frac{4 \left (c^2 d^2-b c d e+b^2 e^2\right ) \sqrt{b x+c x^2}}{15 d^2 e (c d-b e)^2 \sqrt{d+e x}}+\frac{4 \int \frac{-\frac{1}{4} b c d (c d+b e)-\frac{1}{2} c \left (c^2 d^2-b c d e+b^2 e^2\right ) x}{\sqrt{d+e x} \sqrt{b x+c x^2}} \, dx}{15 d^2 e (c d-b e)^2}\\ &=-\frac{2 \sqrt{b x+c x^2}}{5 e (d+e x)^{5/2}}+\frac{2 (2 c d-b e) \sqrt{b x+c x^2}}{15 d e (c d-b e) (d+e x)^{3/2}}+\frac{4 \left (c^2 d^2-b c d e+b^2 e^2\right ) \sqrt{b x+c x^2}}{15 d^2 e (c d-b e)^2 \sqrt{d+e x}}+\frac{(c (2 c d-b e)) \int \frac{1}{\sqrt{d+e x} \sqrt{b x+c x^2}} \, dx}{15 d e^2 (c d-b e)}-\frac{\left (2 c \left (c^2 d^2-b c d e+b^2 e^2\right )\right ) \int \frac{\sqrt{d+e x}}{\sqrt{b x+c x^2}} \, dx}{15 d^2 e^2 (c d-b e)^2}\\ &=-\frac{2 \sqrt{b x+c x^2}}{5 e (d+e x)^{5/2}}+\frac{2 (2 c d-b e) \sqrt{b x+c x^2}}{15 d e (c d-b e) (d+e x)^{3/2}}+\frac{4 \left (c^2 d^2-b c d e+b^2 e^2\right ) \sqrt{b x+c x^2}}{15 d^2 e (c d-b e)^2 \sqrt{d+e x}}+\frac{\left (c (2 c d-b e) \sqrt{x} \sqrt{b+c x}\right ) \int \frac{1}{\sqrt{x} \sqrt{b+c x} \sqrt{d+e x}} \, dx}{15 d e^2 (c d-b e) \sqrt{b x+c x^2}}-\frac{\left (2 c \left (c^2 d^2-b c d e+b^2 e^2\right ) \sqrt{x} \sqrt{b+c x}\right ) \int \frac{\sqrt{d+e x}}{\sqrt{x} \sqrt{b+c x}} \, dx}{15 d^2 e^2 (c d-b e)^2 \sqrt{b x+c x^2}}\\ &=-\frac{2 \sqrt{b x+c x^2}}{5 e (d+e x)^{5/2}}+\frac{2 (2 c d-b e) \sqrt{b x+c x^2}}{15 d e (c d-b e) (d+e x)^{3/2}}+\frac{4 \left (c^2 d^2-b c d e+b^2 e^2\right ) \sqrt{b x+c x^2}}{15 d^2 e (c d-b e)^2 \sqrt{d+e x}}-\frac{\left (2 c \left (c^2 d^2-b c d e+b^2 e^2\right ) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{d+e x}\right ) \int \frac{\sqrt{1+\frac{e x}{d}}}{\sqrt{x} \sqrt{1+\frac{c x}{b}}} \, dx}{15 d^2 e^2 (c d-b e)^2 \sqrt{1+\frac{e x}{d}} \sqrt{b x+c x^2}}+\frac{\left (c (2 c d-b e) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}}\right ) \int \frac{1}{\sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}}} \, dx}{15 d e^2 (c d-b e) \sqrt{d+e x} \sqrt{b x+c x^2}}\\ &=-\frac{2 \sqrt{b x+c x^2}}{5 e (d+e x)^{5/2}}+\frac{2 (2 c d-b e) \sqrt{b x+c x^2}}{15 d e (c d-b e) (d+e x)^{3/2}}+\frac{4 \left (c^2 d^2-b c d e+b^2 e^2\right ) \sqrt{b x+c x^2}}{15 d^2 e (c d-b e)^2 \sqrt{d+e x}}-\frac{4 \sqrt{-b} \sqrt{c} \left (c^2 d^2-b c d e+b^2 e^2\right ) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{15 d^2 e^2 (c d-b e)^2 \sqrt{1+\frac{e x}{d}} \sqrt{b x+c x^2}}+\frac{2 \sqrt{-b} \sqrt{c} (2 c d-b e) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}} F\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{15 d e^2 (c d-b e) \sqrt{d+e x} \sqrt{b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 1.31569, size = 362, normalized size = 0.91 $-\frac{2 \left (b e x (b+c x) \left (-b^2 e^3 x (5 d+2 e x)+b c d e \left (-d^2+7 d e x+2 e^2 x^2\right )-c^2 d^2 \left (d^2+6 d e x+2 e^2 x^2\right )\right )+c \sqrt{\frac{b}{c}} (d+e x)^2 \left (-i b e x^{3/2} \sqrt{\frac{b}{c x}+1} \sqrt{\frac{d}{e x}+1} \left (2 b^2 e^2-3 b c d e+c^2 d^2\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{b}{c}}}{\sqrt{x}}\right ),\frac{c d}{b e}\right )+2 i b e x^{3/2} \sqrt{\frac{b}{c x}+1} \sqrt{\frac{d}{e x}+1} \left (b^2 e^2-b c d e+c^2 d^2\right ) E\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{b}{c}}}{\sqrt{x}}\right )|\frac{c d}{b e}\right )+2 \sqrt{\frac{b}{c}} (b+c x) (d+e x) \left (b^2 e^2-b c d e+c^2 d^2\right )\right )\right )}{15 b d^2 e^2 \sqrt{x (b+c x)} (d+e x)^{5/2} (c d-b e)^2}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Sqrt[b*x + c*x^2]/(d + e*x)^(7/2),x]

[Out]

(-2*(b*e*x*(b + c*x)*(-(b^2*e^3*x*(5*d + 2*e*x)) - c^2*d^2*(d^2 + 6*d*e*x + 2*e^2*x^2) + b*c*d*e*(-d^2 + 7*d*e
*x + 2*e^2*x^2)) + Sqrt[b/c]*c*(d + e*x)^2*(2*Sqrt[b/c]*(c^2*d^2 - b*c*d*e + b^2*e^2)*(b + c*x)*(d + e*x) + (2
*I)*b*e*(c^2*d^2 - b*c*d*e + b^2*e^2)*Sqrt[1 + b/(c*x)]*Sqrt[1 + d/(e*x)]*x^(3/2)*EllipticE[I*ArcSinh[Sqrt[b/c
]/Sqrt[x]], (c*d)/(b*e)] - I*b*e*(c^2*d^2 - 3*b*c*d*e + 2*b^2*e^2)*Sqrt[1 + b/(c*x)]*Sqrt[1 + d/(e*x)]*x^(3/2)
*EllipticF[I*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d)/(b*e)])))/(15*b*d^2*e^2*(c*d - b*e)^2*Sqrt[x*(b + c*x)]*(d + e*
x)^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.303, size = 1897, normalized size = 4.8 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x)^(1/2)/(e*x+d)^(7/2),x)

[Out]

2/15*(3*x^3*b^2*c^2*d*e^4-5*x^3*b*c^3*d^2*e^3+5*x^2*b^3*c*d*e^4-7*x^2*b^2*c^2*d^2*e^3+7*x^2*b*c^3*d^3*e^2+x*b^
2*c^2*d^3*e^2+4*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x^2*b^2*c^2*d^2*e^3*(-c*x/b)^(1/2)*((c*x+b)
/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)-2*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x^2*b*c^3*d^3*e^2*
(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)+2*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1
/2))*x*b^3*c*d^2*e^3*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)-6*EllipticF(((c*x+b)/b)^(1/
2),(b*e/(b*e-c*d))^(1/2))*x*b^2*c^2*d^3*e^2*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)+4*El
lipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x*b*c^3*d^4*e*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b
*e-c*d))^(1/2)-8*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x*b^3*c*d^2*e^3*(-c*x/b)^(1/2)*((c*x+b)/b)
^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)+8*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x*b^2*c^2*d^3*e^2*(-c
*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)-4*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2)
)*x*b*c^3*d^4*e*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)+EllipticF(((c*x+b)/b)^(1/2),(b*e
/(b*e-c*d))^(1/2))*x^2*b^3*c*d*e^4*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)-3*EllipticF((
(c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x^2*b^2*c^2*d^2*e^3*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-
c*d))^(1/2)+x*b*c^3*d^4*e+2*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^4*d^2*e^3*(-c*x/b)^(1/2)*((c*
x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)-2*x^4*b*c^3*d*e^4+EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2)
)*b^3*c*d^3*e^2*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)-3*EllipticF(((c*x+b)/b)^(1/2),(b
*e/(b*e-c*d))^(1/2))*b^2*c^2*d^4*e*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)-4*EllipticE((
(c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^3*c*d^3*e^2*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^
(1/2)+4*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^2*c^2*d^4*e*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e
*x+d)*c/(b*e-c*d))^(1/2)+2*x^4*b^2*c^2*e^5+2*x^4*c^4*d^2*e^3+2*x^3*b^3*c*e^5+6*x^3*c^4*d^3*e^2+x^2*c^4*d^4*e+4
*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x*b^4*d*e^4*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(
b*e-c*d))^(1/2)+2*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x^2*b*c^3*d^3*e^2*(-c*x/b)^(1/2)*((c*x+b)
/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)-4*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*x^2*b^3*c*d*e^4*(-
c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)+2*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2
))*x^2*b^4*e^5*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)+2*EllipticF(((c*x+b)/b)^(1/2),(b*
e/(b*e-c*d))^(1/2))*b*c^3*d^5*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)-2*EllipticE(((c*x+
b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b*c^3*d^5*(-c*x/b)^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2))*(x
*(c*x+b))^(1/2)/c/(b*e-c*d)^2/d^2/(c*x+b)/x/e^2/(e*x+d)^(5/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2} + b x}}{{\left (e x + d\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(1/2)/(e*x+d)^(7/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + b*x)/(e*x + d)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + b x} \sqrt{e x + d}}{e^{4} x^{4} + 4 \, d e^{3} x^{3} + 6 \, d^{2} e^{2} x^{2} + 4 \, d^{3} e x + d^{4}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(1/2)/(e*x+d)^(7/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x)*sqrt(e*x + d)/(e^4*x^4 + 4*d*e^3*x^3 + 6*d^2*e^2*x^2 + 4*d^3*e*x + d^4), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x \left (b + c x\right )}}{\left (d + e x\right )^{\frac{7}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x)**(1/2)/(e*x+d)**(7/2),x)

[Out]

Integral(sqrt(x*(b + c*x))/(d + e*x)**(7/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2} + b x}}{{\left (e x + d\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(1/2)/(e*x+d)^(7/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^2 + b*x)/(e*x + d)^(7/2), x)