### 3.388 $$\int \frac{\sqrt{b x+c x^2}}{\sqrt{d+e x}} \, dx$$

Optimal. Leaf size=246 $\frac{4 \sqrt{-b} d \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{\frac{e x}{d}+1} (c d-b e) \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right ),\frac{b e}{c d}\right )}{3 \sqrt{c} e^2 \sqrt{b x+c x^2} \sqrt{d+e x}}-\frac{2 \sqrt{-b} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{d+e x} (2 c d-b e) E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{3 \sqrt{c} e^2 \sqrt{b x+c x^2} \sqrt{\frac{e x}{d}+1}}+\frac{2 \sqrt{b x+c x^2} \sqrt{d+e x}}{3 e}$

[Out]

(2*Sqrt[d + e*x]*Sqrt[b*x + c*x^2])/(3*e) - (2*Sqrt[-b]*(2*c*d - b*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d + e*x]*
EllipticE[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(3*Sqrt[c]*e^2*Sqrt[1 + (e*x)/d]*Sqrt[b*x + c*x^2]
) + (4*Sqrt[-b]*d*(c*d - b*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[1 + (e*x)/d]*EllipticF[ArcSin[(Sqrt[c]*Sqrt[x])/S
qrt[-b]], (b*e)/(c*d)])/(3*Sqrt[c]*e^2*Sqrt[d + e*x]*Sqrt[b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.189719, antiderivative size = 246, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 23, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.304, Rules used = {734, 843, 715, 112, 110, 117, 116} $\frac{4 \sqrt{-b} d \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{\frac{e x}{d}+1} (c d-b e) F\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{3 \sqrt{c} e^2 \sqrt{b x+c x^2} \sqrt{d+e x}}-\frac{2 \sqrt{-b} \sqrt{x} \sqrt{\frac{c x}{b}+1} \sqrt{d+e x} (2 c d-b e) E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{3 \sqrt{c} e^2 \sqrt{b x+c x^2} \sqrt{\frac{e x}{d}+1}}+\frac{2 \sqrt{b x+c x^2} \sqrt{d+e x}}{3 e}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sqrt[b*x + c*x^2]/Sqrt[d + e*x],x]

[Out]

(2*Sqrt[d + e*x]*Sqrt[b*x + c*x^2])/(3*e) - (2*Sqrt[-b]*(2*c*d - b*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d + e*x]*
EllipticE[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(3*Sqrt[c]*e^2*Sqrt[1 + (e*x)/d]*Sqrt[b*x + c*x^2]
) + (4*Sqrt[-b]*d*(c*d - b*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[1 + (e*x)/d]*EllipticF[ArcSin[(Sqrt[c]*Sqrt[x])/S
qrt[-b]], (b*e)/(c*d)])/(3*Sqrt[c]*e^2*Sqrt[d + e*x]*Sqrt[b*x + c*x^2])

Rule 734

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 715

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(Sqrt[x]*Sqrt[b + c*x])/Sqrt[
b*x + c*x^2], Int[(d + e*x)^m/(Sqrt[x]*Sqrt[b + c*x]), x], x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0] &
& NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 112

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[e + f*x]*Sqrt[
1 + (d*x)/c])/(Sqrt[c + d*x]*Sqrt[1 + (f*x)/e]), Int[Sqrt[1 + (f*x)/e]/(Sqrt[b*x]*Sqrt[1 + (d*x)/c]), x], x] /
; FreeQ[{b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 110

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Sqrt[e]*Rt[-(b/d)
, 2]*EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/b, x] /; FreeQ[{b, c, d, e, f}, x] &&
NeQ[d*e - c*f, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !LtQ[-(b/d), 0]

Rule 117

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[1 + (d*x)/c]
*Sqrt[1 + (f*x)/e])/(Sqrt[c + d*x]*Sqrt[e + f*x]), Int[1/(Sqrt[b*x]*Sqrt[1 + (d*x)/c]*Sqrt[1 + (f*x)/e]), x],
x] /; FreeQ[{b, c, d, e, f}, x] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 116

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d), 2]*E
llipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/(b*Sqrt[e]), x] /; FreeQ[{b, c, d, e, f}, x]
&& GtQ[c, 0] && GtQ[e, 0] && (PosQ[-(b/d)] || NegQ[-(b/f)])

Rubi steps

\begin{align*} \int \frac{\sqrt{b x+c x^2}}{\sqrt{d+e x}} \, dx &=\frac{2 \sqrt{d+e x} \sqrt{b x+c x^2}}{3 e}-\frac{\int \frac{b d+(2 c d-b e) x}{\sqrt{d+e x} \sqrt{b x+c x^2}} \, dx}{3 e}\\ &=\frac{2 \sqrt{d+e x} \sqrt{b x+c x^2}}{3 e}+\frac{(2 d (c d-b e)) \int \frac{1}{\sqrt{d+e x} \sqrt{b x+c x^2}} \, dx}{3 e^2}-\frac{(2 c d-b e) \int \frac{\sqrt{d+e x}}{\sqrt{b x+c x^2}} \, dx}{3 e^2}\\ &=\frac{2 \sqrt{d+e x} \sqrt{b x+c x^2}}{3 e}+\frac{\left (2 d (c d-b e) \sqrt{x} \sqrt{b+c x}\right ) \int \frac{1}{\sqrt{x} \sqrt{b+c x} \sqrt{d+e x}} \, dx}{3 e^2 \sqrt{b x+c x^2}}-\frac{\left ((2 c d-b e) \sqrt{x} \sqrt{b+c x}\right ) \int \frac{\sqrt{d+e x}}{\sqrt{x} \sqrt{b+c x}} \, dx}{3 e^2 \sqrt{b x+c x^2}}\\ &=\frac{2 \sqrt{d+e x} \sqrt{b x+c x^2}}{3 e}-\frac{\left ((2 c d-b e) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{d+e x}\right ) \int \frac{\sqrt{1+\frac{e x}{d}}}{\sqrt{x} \sqrt{1+\frac{c x}{b}}} \, dx}{3 e^2 \sqrt{1+\frac{e x}{d}} \sqrt{b x+c x^2}}+\frac{\left (2 d (c d-b e) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}}\right ) \int \frac{1}{\sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}}} \, dx}{3 e^2 \sqrt{d+e x} \sqrt{b x+c x^2}}\\ &=\frac{2 \sqrt{d+e x} \sqrt{b x+c x^2}}{3 e}-\frac{2 \sqrt{-b} (2 c d-b e) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{3 \sqrt{c} e^2 \sqrt{1+\frac{e x}{d}} \sqrt{b x+c x^2}}+\frac{4 \sqrt{-b} d (c d-b e) \sqrt{x} \sqrt{1+\frac{c x}{b}} \sqrt{1+\frac{e x}{d}} F\left (\sin ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{-b}}\right )|\frac{b e}{c d}\right )}{3 \sqrt{c} e^2 \sqrt{d+e x} \sqrt{b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 1.39797, size = 226, normalized size = 0.92 $\frac{2 \left (-i c e x^{3/2} \sqrt{\frac{b}{c}} \sqrt{\frac{b}{c x}+1} \sqrt{\frac{d}{e x}+1} (b e-c d) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{b}{c}}}{\sqrt{x}}\right ),\frac{c d}{b e}\right )+i c e x^{3/2} \sqrt{\frac{b}{c}} \sqrt{\frac{b}{c x}+1} \sqrt{\frac{d}{e x}+1} (b e-2 c d) E\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{b}{c}}}{\sqrt{x}}\right )|\frac{c d}{b e}\right )+(b+c x) (d+e x) (b e-2 c d+c e x)\right )}{3 c e^2 \sqrt{x (b+c x)} \sqrt{d+e x}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Sqrt[b*x + c*x^2]/Sqrt[d + e*x],x]

[Out]

(2*((b + c*x)*(d + e*x)*(-2*c*d + b*e + c*e*x) + I*Sqrt[b/c]*c*e*(-2*c*d + b*e)*Sqrt[1 + b/(c*x)]*Sqrt[1 + d/(
e*x)]*x^(3/2)*EllipticE[I*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d)/(b*e)] - I*Sqrt[b/c]*c*e*(-(c*d) + b*e)*Sqrt[1 + b
/(c*x)]*Sqrt[1 + d/(e*x)]*x^(3/2)*EllipticF[I*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d)/(b*e)]))/(3*c*e^2*Sqrt[x*(b +
c*x)]*Sqrt[d + e*x])

________________________________________________________________________________________

Maple [B]  time = 0.273, size = 467, normalized size = 1.9 \begin{align*} -{\frac{2}{3\,x \left ( ce{x}^{2}+bxe+cdx+bd \right ){e}^{2}{c}^{2}}\sqrt{x \left ( cx+b \right ) }\sqrt{ex+d} \left ( 2\,{b}^{2}d\sqrt{{\frac{cx+b}{b}}}\sqrt{-{\frac{c \left ( ex+d \right ) }{be-cd}}}\sqrt{-{\frac{cx}{b}}}{\it EllipticF} \left ( \sqrt{{\frac{cx+b}{b}}},\sqrt{{\frac{be}{be-cd}}} \right ) ec-2\,\sqrt{{\frac{cx+b}{b}}}\sqrt{-{\frac{c \left ( ex+d \right ) }{be-cd}}}\sqrt{-{\frac{cx}{b}}}{\it EllipticF} \left ( \sqrt{{\frac{cx+b}{b}}},\sqrt{{\frac{be}{be-cd}}} \right ) b{c}^{2}{d}^{2}+\sqrt{{\frac{cx+b}{b}}}\sqrt{-{\frac{c \left ( ex+d \right ) }{be-cd}}}\sqrt{-{\frac{cx}{b}}}{\it EllipticE} \left ( \sqrt{{\frac{cx+b}{b}}},\sqrt{{\frac{be}{be-cd}}} \right ){b}^{3}{e}^{2}-3\,\sqrt{{\frac{cx+b}{b}}}\sqrt{-{\frac{c \left ( ex+d \right ) }{be-cd}}}\sqrt{-{\frac{cx}{b}}}{\it EllipticE} \left ( \sqrt{{\frac{cx+b}{b}}},\sqrt{{\frac{be}{be-cd}}} \right ){b}^{2}cde+2\,\sqrt{{\frac{cx+b}{b}}}\sqrt{-{\frac{c \left ( ex+d \right ) }{be-cd}}}\sqrt{-{\frac{cx}{b}}}{\it EllipticE} \left ( \sqrt{{\frac{cx+b}{b}}},\sqrt{{\frac{be}{be-cd}}} \right ) b{c}^{2}{d}^{2}-{x}^{3}{c}^{3}{e}^{2}-{x}^{2}b{c}^{2}{e}^{2}-{x}^{2}{c}^{3}de-xb{c}^{2}de \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x)^(1/2)/(e*x+d)^(1/2),x)

[Out]

-2/3*(x*(c*x+b))^(1/2)*(e*x+d)^(1/2)*(2*b^2*d*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*El
lipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*e*c-2*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)
^(1/2)*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b*c^2*d^2+((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(
1/2)*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^3*e^2-3*((c*x+b)/b)^(1/2)*(-(e*x+d)*c
/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^2*c*d*e+2*((c*x+b)/b)^(1
/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b*c^2*d^2-x
^3*c^3*e^2-x^2*b*c^2*e^2-x^2*c^3*d*e-x*b*c^2*d*e)/x/(c*e*x^2+b*e*x+c*d*x+b*d)/e^2/c^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2} + b x}}{\sqrt{e x + d}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(1/2)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + b*x)/sqrt(e*x + d), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + b x}}{\sqrt{e x + d}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(1/2)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x)/sqrt(e*x + d), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x \left (b + c x\right )}}{\sqrt{d + e x}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x)**(1/2)/(e*x+d)**(1/2),x)

[Out]

Integral(sqrt(x*(b + c*x))/sqrt(d + e*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2} + b x}}{\sqrt{e x + d}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(1/2)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^2 + b*x)/sqrt(e*x + d), x)