### 3.341 $$\int \frac{b x+c x^2}{\sqrt{d+e x}} \, dx$$

Optimal. Leaf size=66 $-\frac{2 (d+e x)^{3/2} (2 c d-b e)}{3 e^3}+\frac{2 d \sqrt{d+e x} (c d-b e)}{e^3}+\frac{2 c (d+e x)^{5/2}}{5 e^3}$

[Out]

(2*d*(c*d - b*e)*Sqrt[d + e*x])/e^3 - (2*(2*c*d - b*e)*(d + e*x)^(3/2))/(3*e^3) + (2*c*(d + e*x)^(5/2))/(5*e^3
)

________________________________________________________________________________________

Rubi [A]  time = 0.0272946, antiderivative size = 66, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 1, integrand size = 19, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.053, Rules used = {698} $-\frac{2 (d+e x)^{3/2} (2 c d-b e)}{3 e^3}+\frac{2 d \sqrt{d+e x} (c d-b e)}{e^3}+\frac{2 c (d+e x)^{5/2}}{5 e^3}$

Antiderivative was successfully veriﬁed.

[In]

Int[(b*x + c*x^2)/Sqrt[d + e*x],x]

[Out]

(2*d*(c*d - b*e)*Sqrt[d + e*x])/e^3 - (2*(2*c*d - b*e)*(d + e*x)^(3/2))/(3*e^3) + (2*c*(d + e*x)^(5/2))/(5*e^3
)

Rule 698

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d +
e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*
e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && IntegerQ[p] && (GtQ[p, 0] || (EqQ[a, 0] && IntegerQ[m]))

Rubi steps

\begin{align*} \int \frac{b x+c x^2}{\sqrt{d+e x}} \, dx &=\int \left (\frac{d (c d-b e)}{e^2 \sqrt{d+e x}}+\frac{(-2 c d+b e) \sqrt{d+e x}}{e^2}+\frac{c (d+e x)^{3/2}}{e^2}\right ) \, dx\\ &=\frac{2 d (c d-b e) \sqrt{d+e x}}{e^3}-\frac{2 (2 c d-b e) (d+e x)^{3/2}}{3 e^3}+\frac{2 c (d+e x)^{5/2}}{5 e^3}\\ \end{align*}

Mathematica [A]  time = 0.0309657, size = 49, normalized size = 0.74 $\frac{2 \sqrt{d+e x} \left (5 b e (e x-2 d)+c \left (8 d^2-4 d e x+3 e^2 x^2\right )\right )}{15 e^3}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(b*x + c*x^2)/Sqrt[d + e*x],x]

[Out]

(2*Sqrt[d + e*x]*(5*b*e*(-2*d + e*x) + c*(8*d^2 - 4*d*e*x + 3*e^2*x^2)))/(15*e^3)

________________________________________________________________________________________

Maple [A]  time = 0.048, size = 47, normalized size = 0.7 \begin{align*} -{\frac{-6\,c{e}^{2}{x}^{2}-10\,b{e}^{2}x+8\,cdex+20\,bde-16\,c{d}^{2}}{15\,{e}^{3}}\sqrt{ex+d}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x)/(e*x+d)^(1/2),x)

[Out]

-2/15*(-3*c*e^2*x^2-5*b*e^2*x+4*c*d*e*x+10*b*d*e-8*c*d^2)*(e*x+d)^(1/2)/e^3

________________________________________________________________________________________

Maxima [A]  time = 1.0617, size = 90, normalized size = 1.36 \begin{align*} \frac{2 \,{\left (\frac{5 \,{\left ({\left (e x + d\right )}^{\frac{3}{2}} - 3 \, \sqrt{e x + d} d\right )} b}{e} + \frac{{\left (3 \,{\left (e x + d\right )}^{\frac{5}{2}} - 10 \,{\left (e x + d\right )}^{\frac{3}{2}} d + 15 \, \sqrt{e x + d} d^{2}\right )} c}{e^{2}}\right )}}{15 \, e} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

2/15*(5*((e*x + d)^(3/2) - 3*sqrt(e*x + d)*d)*b/e + (3*(e*x + d)^(5/2) - 10*(e*x + d)^(3/2)*d + 15*sqrt(e*x +
d)*d^2)*c/e^2)/e

________________________________________________________________________________________

Fricas [A]  time = 1.82246, size = 112, normalized size = 1.7 \begin{align*} \frac{2 \,{\left (3 \, c e^{2} x^{2} + 8 \, c d^{2} - 10 \, b d e -{\left (4 \, c d e - 5 \, b e^{2}\right )} x\right )} \sqrt{e x + d}}{15 \, e^{3}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

2/15*(3*c*e^2*x^2 + 8*c*d^2 - 10*b*d*e - (4*c*d*e - 5*b*e^2)*x)*sqrt(e*x + d)/e^3

________________________________________________________________________________________

Sympy [A]  time = 11.9097, size = 182, normalized size = 2.76 \begin{align*} \begin{cases} - \frac{\frac{2 b d \left (- \frac{d}{\sqrt{d + e x}} - \sqrt{d + e x}\right )}{e} + \frac{2 b \left (\frac{d^{2}}{\sqrt{d + e x}} + 2 d \sqrt{d + e x} - \frac{\left (d + e x\right )^{\frac{3}{2}}}{3}\right )}{e} + \frac{2 c d \left (\frac{d^{2}}{\sqrt{d + e x}} + 2 d \sqrt{d + e x} - \frac{\left (d + e x\right )^{\frac{3}{2}}}{3}\right )}{e^{2}} + \frac{2 c \left (- \frac{d^{3}}{\sqrt{d + e x}} - 3 d^{2} \sqrt{d + e x} + d \left (d + e x\right )^{\frac{3}{2}} - \frac{\left (d + e x\right )^{\frac{5}{2}}}{5}\right )}{e^{2}}}{e} & \text{for}\: e \neq 0 \\\frac{\frac{b x^{2}}{2} + \frac{c x^{3}}{3}}{\sqrt{d}} & \text{otherwise} \end{cases} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x)/(e*x+d)**(1/2),x)

[Out]

Piecewise((-(2*b*d*(-d/sqrt(d + e*x) - sqrt(d + e*x))/e + 2*b*(d**2/sqrt(d + e*x) + 2*d*sqrt(d + e*x) - (d + e
*x)**(3/2)/3)/e + 2*c*d*(d**2/sqrt(d + e*x) + 2*d*sqrt(d + e*x) - (d + e*x)**(3/2)/3)/e**2 + 2*c*(-d**3/sqrt(d
+ e*x) - 3*d**2*sqrt(d + e*x) + d*(d + e*x)**(3/2) - (d + e*x)**(5/2)/5)/e**2)/e, Ne(e, 0)), ((b*x**2/2 + c*x
**3/3)/sqrt(d), True))

________________________________________________________________________________________

Giac [A]  time = 1.31709, size = 93, normalized size = 1.41 \begin{align*} \frac{2}{15} \,{\left (5 \,{\left ({\left (x e + d\right )}^{\frac{3}{2}} - 3 \, \sqrt{x e + d} d\right )} b e^{\left (-1\right )} +{\left (3 \,{\left (x e + d\right )}^{\frac{5}{2}} - 10 \,{\left (x e + d\right )}^{\frac{3}{2}} d + 15 \, \sqrt{x e + d} d^{2}\right )} c e^{\left (-2\right )}\right )} e^{\left (-1\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

2/15*(5*((x*e + d)^(3/2) - 3*sqrt(x*e + d)*d)*b*e^(-1) + (3*(x*e + d)^(5/2) - 10*(x*e + d)^(3/2)*d + 15*sqrt(x
*e + d)*d^2)*c*e^(-2))*e^(-1)