### 3.257 $$\int \frac{(b x+c x^2)^3}{(d+e x)^9} \, dx$$

Optimal. Leaf size=231 $-\frac{3 c \left (b^2 e^2-5 b c d e+5 c^2 d^2\right )}{4 e^7 (d+e x)^4}+\frac{(2 c d-b e) \left (b^2 e^2-10 b c d e+10 c^2 d^2\right )}{5 e^7 (d+e x)^5}-\frac{d (c d-b e) \left (b^2 e^2-5 b c d e+5 c^2 d^2\right )}{2 e^7 (d+e x)^6}+\frac{c^2 (2 c d-b e)}{e^7 (d+e x)^3}+\frac{3 d^2 (c d-b e)^2 (2 c d-b e)}{7 e^7 (d+e x)^7}-\frac{d^3 (c d-b e)^3}{8 e^7 (d+e x)^8}-\frac{c^3}{2 e^7 (d+e x)^2}$

[Out]

-(d^3*(c*d - b*e)^3)/(8*e^7*(d + e*x)^8) + (3*d^2*(c*d - b*e)^2*(2*c*d - b*e))/(7*e^7*(d + e*x)^7) - (d*(c*d -
b*e)*(5*c^2*d^2 - 5*b*c*d*e + b^2*e^2))/(2*e^7*(d + e*x)^6) + ((2*c*d - b*e)*(10*c^2*d^2 - 10*b*c*d*e + b^2*e
^2))/(5*e^7*(d + e*x)^5) - (3*c*(5*c^2*d^2 - 5*b*c*d*e + b^2*e^2))/(4*e^7*(d + e*x)^4) + (c^2*(2*c*d - b*e))/(
e^7*(d + e*x)^3) - c^3/(2*e^7*(d + e*x)^2)

________________________________________________________________________________________

Rubi [A]  time = 0.157936, antiderivative size = 231, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 1, integrand size = 19, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.053, Rules used = {698} $-\frac{3 c \left (b^2 e^2-5 b c d e+5 c^2 d^2\right )}{4 e^7 (d+e x)^4}+\frac{(2 c d-b e) \left (b^2 e^2-10 b c d e+10 c^2 d^2\right )}{5 e^7 (d+e x)^5}-\frac{d (c d-b e) \left (b^2 e^2-5 b c d e+5 c^2 d^2\right )}{2 e^7 (d+e x)^6}+\frac{c^2 (2 c d-b e)}{e^7 (d+e x)^3}+\frac{3 d^2 (c d-b e)^2 (2 c d-b e)}{7 e^7 (d+e x)^7}-\frac{d^3 (c d-b e)^3}{8 e^7 (d+e x)^8}-\frac{c^3}{2 e^7 (d+e x)^2}$

Antiderivative was successfully veriﬁed.

[In]

Int[(b*x + c*x^2)^3/(d + e*x)^9,x]

[Out]

-(d^3*(c*d - b*e)^3)/(8*e^7*(d + e*x)^8) + (3*d^2*(c*d - b*e)^2*(2*c*d - b*e))/(7*e^7*(d + e*x)^7) - (d*(c*d -
b*e)*(5*c^2*d^2 - 5*b*c*d*e + b^2*e^2))/(2*e^7*(d + e*x)^6) + ((2*c*d - b*e)*(10*c^2*d^2 - 10*b*c*d*e + b^2*e
^2))/(5*e^7*(d + e*x)^5) - (3*c*(5*c^2*d^2 - 5*b*c*d*e + b^2*e^2))/(4*e^7*(d + e*x)^4) + (c^2*(2*c*d - b*e))/(
e^7*(d + e*x)^3) - c^3/(2*e^7*(d + e*x)^2)

Rule 698

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d +
e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*
e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && IntegerQ[p] && (GtQ[p, 0] || (EqQ[a, 0] && IntegerQ[m]))

Rubi steps

\begin{align*} \int \frac{\left (b x+c x^2\right )^3}{(d+e x)^9} \, dx &=\int \left (\frac{d^3 (c d-b e)^3}{e^6 (d+e x)^9}-\frac{3 d^2 (c d-b e)^2 (2 c d-b e)}{e^6 (d+e x)^8}+\frac{3 d (c d-b e) \left (5 c^2 d^2-5 b c d e+b^2 e^2\right )}{e^6 (d+e x)^7}+\frac{(2 c d-b e) \left (-10 c^2 d^2+10 b c d e-b^2 e^2\right )}{e^6 (d+e x)^6}+\frac{3 c \left (5 c^2 d^2-5 b c d e+b^2 e^2\right )}{e^6 (d+e x)^5}-\frac{3 c^2 (2 c d-b e)}{e^6 (d+e x)^4}+\frac{c^3}{e^6 (d+e x)^3}\right ) \, dx\\ &=-\frac{d^3 (c d-b e)^3}{8 e^7 (d+e x)^8}+\frac{3 d^2 (c d-b e)^2 (2 c d-b e)}{7 e^7 (d+e x)^7}-\frac{d (c d-b e) \left (5 c^2 d^2-5 b c d e+b^2 e^2\right )}{2 e^7 (d+e x)^6}+\frac{(2 c d-b e) \left (10 c^2 d^2-10 b c d e+b^2 e^2\right )}{5 e^7 (d+e x)^5}-\frac{3 c \left (5 c^2 d^2-5 b c d e+b^2 e^2\right )}{4 e^7 (d+e x)^4}+\frac{c^2 (2 c d-b e)}{e^7 (d+e x)^3}-\frac{c^3}{2 e^7 (d+e x)^2}\\ \end{align*}

Mathematica [A]  time = 0.0805159, size = 221, normalized size = 0.96 $-\frac{3 b^2 c e^2 \left (28 d^2 e^2 x^2+8 d^3 e x+d^4+56 d e^3 x^3+70 e^4 x^4\right )+b^3 e^3 \left (8 d^2 e x+d^3+28 d e^2 x^2+56 e^3 x^3\right )+5 b c^2 e \left (28 d^3 e^2 x^2+56 d^2 e^3 x^3+8 d^4 e x+d^5+70 d e^4 x^4+56 e^5 x^5\right )+5 c^3 \left (28 d^4 e^2 x^2+56 d^3 e^3 x^3+70 d^2 e^4 x^4+8 d^5 e x+d^6+56 d e^5 x^5+28 e^6 x^6\right )}{280 e^7 (d+e x)^8}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(b*x + c*x^2)^3/(d + e*x)^9,x]

[Out]

-(b^3*e^3*(d^3 + 8*d^2*e*x + 28*d*e^2*x^2 + 56*e^3*x^3) + 3*b^2*c*e^2*(d^4 + 8*d^3*e*x + 28*d^2*e^2*x^2 + 56*d
*e^3*x^3 + 70*e^4*x^4) + 5*b*c^2*e*(d^5 + 8*d^4*e*x + 28*d^3*e^2*x^2 + 56*d^2*e^3*x^3 + 70*d*e^4*x^4 + 56*e^5*
x^5) + 5*c^3*(d^6 + 8*d^5*e*x + 28*d^4*e^2*x^2 + 56*d^3*e^3*x^3 + 70*d^2*e^4*x^4 + 56*d*e^5*x^5 + 28*e^6*x^6))
/(280*e^7*(d + e*x)^8)

________________________________________________________________________________________

Maple [A]  time = 0.049, size = 274, normalized size = 1.2 \begin{align*} -{\frac{{c}^{3}}{2\,{e}^{7} \left ( ex+d \right ) ^{2}}}-{\frac{3\,{d}^{2} \left ({b}^{3}{e}^{3}-4\,{b}^{2}cd{e}^{2}+5\,b{c}^{2}{d}^{2}e-2\,{c}^{3}{d}^{3} \right ) }{7\,{e}^{7} \left ( ex+d \right ) ^{7}}}-{\frac{{b}^{3}{e}^{3}-12\,{b}^{2}cd{e}^{2}+30\,b{c}^{2}{d}^{2}e-20\,{c}^{3}{d}^{3}}{5\,{e}^{7} \left ( ex+d \right ) ^{5}}}+{\frac{{d}^{3} \left ({b}^{3}{e}^{3}-3\,{b}^{2}cd{e}^{2}+3\,b{c}^{2}{d}^{2}e-{c}^{3}{d}^{3} \right ) }{8\,{e}^{7} \left ( ex+d \right ) ^{8}}}-{\frac{{c}^{2} \left ( be-2\,cd \right ) }{{e}^{7} \left ( ex+d \right ) ^{3}}}+{\frac{d \left ({b}^{3}{e}^{3}-6\,{b}^{2}cd{e}^{2}+10\,b{c}^{2}{d}^{2}e-5\,{c}^{3}{d}^{3} \right ) }{2\,{e}^{7} \left ( ex+d \right ) ^{6}}}-{\frac{3\,c \left ({b}^{2}{e}^{2}-5\,bcde+5\,{c}^{2}{d}^{2} \right ) }{4\,{e}^{7} \left ( ex+d \right ) ^{4}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x)^3/(e*x+d)^9,x)

[Out]

-1/2*c^3/e^7/(e*x+d)^2-3/7*d^2*(b^3*e^3-4*b^2*c*d*e^2+5*b*c^2*d^2*e-2*c^3*d^3)/e^7/(e*x+d)^7-1/5*(b^3*e^3-12*b
^2*c*d*e^2+30*b*c^2*d^2*e-20*c^3*d^3)/e^7/(e*x+d)^5+1/8*d^3*(b^3*e^3-3*b^2*c*d*e^2+3*b*c^2*d^2*e-c^3*d^3)/e^7/
(e*x+d)^8-c^2*(b*e-2*c*d)/e^7/(e*x+d)^3+1/2*d*(b^3*e^3-6*b^2*c*d*e^2+10*b*c^2*d^2*e-5*c^3*d^3)/e^7/(e*x+d)^6-3
/4*c*(b^2*e^2-5*b*c*d*e+5*c^2*d^2)/e^7/(e*x+d)^4

________________________________________________________________________________________

Maxima [A]  time = 1.07856, size = 464, normalized size = 2.01 \begin{align*} -\frac{140 \, c^{3} e^{6} x^{6} + 5 \, c^{3} d^{6} + 5 \, b c^{2} d^{5} e + 3 \, b^{2} c d^{4} e^{2} + b^{3} d^{3} e^{3} + 280 \,{\left (c^{3} d e^{5} + b c^{2} e^{6}\right )} x^{5} + 70 \,{\left (5 \, c^{3} d^{2} e^{4} + 5 \, b c^{2} d e^{5} + 3 \, b^{2} c e^{6}\right )} x^{4} + 56 \,{\left (5 \, c^{3} d^{3} e^{3} + 5 \, b c^{2} d^{2} e^{4} + 3 \, b^{2} c d e^{5} + b^{3} e^{6}\right )} x^{3} + 28 \,{\left (5 \, c^{3} d^{4} e^{2} + 5 \, b c^{2} d^{3} e^{3} + 3 \, b^{2} c d^{2} e^{4} + b^{3} d e^{5}\right )} x^{2} + 8 \,{\left (5 \, c^{3} d^{5} e + 5 \, b c^{2} d^{4} e^{2} + 3 \, b^{2} c d^{3} e^{3} + b^{3} d^{2} e^{4}\right )} x}{280 \,{\left (e^{15} x^{8} + 8 \, d e^{14} x^{7} + 28 \, d^{2} e^{13} x^{6} + 56 \, d^{3} e^{12} x^{5} + 70 \, d^{4} e^{11} x^{4} + 56 \, d^{5} e^{10} x^{3} + 28 \, d^{6} e^{9} x^{2} + 8 \, d^{7} e^{8} x + d^{8} e^{7}\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^3/(e*x+d)^9,x, algorithm="maxima")

[Out]

-1/280*(140*c^3*e^6*x^6 + 5*c^3*d^6 + 5*b*c^2*d^5*e + 3*b^2*c*d^4*e^2 + b^3*d^3*e^3 + 280*(c^3*d*e^5 + b*c^2*e
^6)*x^5 + 70*(5*c^3*d^2*e^4 + 5*b*c^2*d*e^5 + 3*b^2*c*e^6)*x^4 + 56*(5*c^3*d^3*e^3 + 5*b*c^2*d^2*e^4 + 3*b^2*c
*d*e^5 + b^3*e^6)*x^3 + 28*(5*c^3*d^4*e^2 + 5*b*c^2*d^3*e^3 + 3*b^2*c*d^2*e^4 + b^3*d*e^5)*x^2 + 8*(5*c^3*d^5*
e + 5*b*c^2*d^4*e^2 + 3*b^2*c*d^3*e^3 + b^3*d^2*e^4)*x)/(e^15*x^8 + 8*d*e^14*x^7 + 28*d^2*e^13*x^6 + 56*d^3*e^
12*x^5 + 70*d^4*e^11*x^4 + 56*d^5*e^10*x^3 + 28*d^6*e^9*x^2 + 8*d^7*e^8*x + d^8*e^7)

________________________________________________________________________________________

Fricas [A]  time = 1.83764, size = 710, normalized size = 3.07 \begin{align*} -\frac{140 \, c^{3} e^{6} x^{6} + 5 \, c^{3} d^{6} + 5 \, b c^{2} d^{5} e + 3 \, b^{2} c d^{4} e^{2} + b^{3} d^{3} e^{3} + 280 \,{\left (c^{3} d e^{5} + b c^{2} e^{6}\right )} x^{5} + 70 \,{\left (5 \, c^{3} d^{2} e^{4} + 5 \, b c^{2} d e^{5} + 3 \, b^{2} c e^{6}\right )} x^{4} + 56 \,{\left (5 \, c^{3} d^{3} e^{3} + 5 \, b c^{2} d^{2} e^{4} + 3 \, b^{2} c d e^{5} + b^{3} e^{6}\right )} x^{3} + 28 \,{\left (5 \, c^{3} d^{4} e^{2} + 5 \, b c^{2} d^{3} e^{3} + 3 \, b^{2} c d^{2} e^{4} + b^{3} d e^{5}\right )} x^{2} + 8 \,{\left (5 \, c^{3} d^{5} e + 5 \, b c^{2} d^{4} e^{2} + 3 \, b^{2} c d^{3} e^{3} + b^{3} d^{2} e^{4}\right )} x}{280 \,{\left (e^{15} x^{8} + 8 \, d e^{14} x^{7} + 28 \, d^{2} e^{13} x^{6} + 56 \, d^{3} e^{12} x^{5} + 70 \, d^{4} e^{11} x^{4} + 56 \, d^{5} e^{10} x^{3} + 28 \, d^{6} e^{9} x^{2} + 8 \, d^{7} e^{8} x + d^{8} e^{7}\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^3/(e*x+d)^9,x, algorithm="fricas")

[Out]

-1/280*(140*c^3*e^6*x^6 + 5*c^3*d^6 + 5*b*c^2*d^5*e + 3*b^2*c*d^4*e^2 + b^3*d^3*e^3 + 280*(c^3*d*e^5 + b*c^2*e
^6)*x^5 + 70*(5*c^3*d^2*e^4 + 5*b*c^2*d*e^5 + 3*b^2*c*e^6)*x^4 + 56*(5*c^3*d^3*e^3 + 5*b*c^2*d^2*e^4 + 3*b^2*c
*d*e^5 + b^3*e^6)*x^3 + 28*(5*c^3*d^4*e^2 + 5*b*c^2*d^3*e^3 + 3*b^2*c*d^2*e^4 + b^3*d*e^5)*x^2 + 8*(5*c^3*d^5*
e + 5*b*c^2*d^4*e^2 + 3*b^2*c*d^3*e^3 + b^3*d^2*e^4)*x)/(e^15*x^8 + 8*d*e^14*x^7 + 28*d^2*e^13*x^6 + 56*d^3*e^
12*x^5 + 70*d^4*e^11*x^4 + 56*d^5*e^10*x^3 + 28*d^6*e^9*x^2 + 8*d^7*e^8*x + d^8*e^7)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x)**3/(e*x+d)**9,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.3183, size = 360, normalized size = 1.56 \begin{align*} -\frac{{\left (140 \, c^{3} x^{6} e^{6} + 280 \, c^{3} d x^{5} e^{5} + 350 \, c^{3} d^{2} x^{4} e^{4} + 280 \, c^{3} d^{3} x^{3} e^{3} + 140 \, c^{3} d^{4} x^{2} e^{2} + 40 \, c^{3} d^{5} x e + 5 \, c^{3} d^{6} + 280 \, b c^{2} x^{5} e^{6} + 350 \, b c^{2} d x^{4} e^{5} + 280 \, b c^{2} d^{2} x^{3} e^{4} + 140 \, b c^{2} d^{3} x^{2} e^{3} + 40 \, b c^{2} d^{4} x e^{2} + 5 \, b c^{2} d^{5} e + 210 \, b^{2} c x^{4} e^{6} + 168 \, b^{2} c d x^{3} e^{5} + 84 \, b^{2} c d^{2} x^{2} e^{4} + 24 \, b^{2} c d^{3} x e^{3} + 3 \, b^{2} c d^{4} e^{2} + 56 \, b^{3} x^{3} e^{6} + 28 \, b^{3} d x^{2} e^{5} + 8 \, b^{3} d^{2} x e^{4} + b^{3} d^{3} e^{3}\right )} e^{\left (-7\right )}}{280 \,{\left (x e + d\right )}^{8}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^3/(e*x+d)^9,x, algorithm="giac")

[Out]

-1/280*(140*c^3*x^6*e^6 + 280*c^3*d*x^5*e^5 + 350*c^3*d^2*x^4*e^4 + 280*c^3*d^3*x^3*e^3 + 140*c^3*d^4*x^2*e^2
+ 40*c^3*d^5*x*e + 5*c^3*d^6 + 280*b*c^2*x^5*e^6 + 350*b*c^2*d*x^4*e^5 + 280*b*c^2*d^2*x^3*e^4 + 140*b*c^2*d^3
*x^2*e^3 + 40*b*c^2*d^4*x*e^2 + 5*b*c^2*d^5*e + 210*b^2*c*x^4*e^6 + 168*b^2*c*d*x^3*e^5 + 84*b^2*c*d^2*x^2*e^4
+ 24*b^2*c*d^3*x*e^3 + 3*b^2*c*d^4*e^2 + 56*b^3*x^3*e^6 + 28*b^3*d*x^2*e^5 + 8*b^3*d^2*x*e^4 + b^3*d^3*e^3)*e
^(-7)/(x*e + d)^8