### 3.2566 $$\int (a+b x+c x^2)^p \, dx$$

Optimal. Leaf size=122 $-\frac{2^{p+1} \left (-\frac{-\sqrt{b^2-4 a c}+b+2 c x}{\sqrt{b^2-4 a c}}\right )^{-p-1} \left (a+b x+c x^2\right )^{p+1} \, _2F_1\left (-p,p+1;p+2;\frac{b+2 c x+\sqrt{b^2-4 a c}}{2 \sqrt{b^2-4 a c}}\right )}{(p+1) \sqrt{b^2-4 a c}}$

[Out]

-((2^(1 + p)*(-((b - Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]))^(-1 - p)*(a + b*x + c*x^2)^(1 + p)*Hyperge
ometric2F1[-p, 1 + p, 2 + p, (b + Sqrt[b^2 - 4*a*c] + 2*c*x)/(2*Sqrt[b^2 - 4*a*c])])/(Sqrt[b^2 - 4*a*c]*(1 + p
)))

________________________________________________________________________________________

Rubi [A]  time = 0.0149388, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 12, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.083, Rules used = {624} $-\frac{2^{p+1} \left (-\frac{-\sqrt{b^2-4 a c}+b+2 c x}{\sqrt{b^2-4 a c}}\right )^{-p-1} \left (a+b x+c x^2\right )^{p+1} \, _2F_1\left (-p,p+1;p+2;\frac{b+2 c x+\sqrt{b^2-4 a c}}{2 \sqrt{b^2-4 a c}}\right )}{(p+1) \sqrt{b^2-4 a c}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(a + b*x + c*x^2)^p,x]

[Out]

-((2^(1 + p)*(-((b - Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]))^(-1 - p)*(a + b*x + c*x^2)^(1 + p)*Hyperge
ometric2F1[-p, 1 + p, 2 + p, (b + Sqrt[b^2 - 4*a*c] + 2*c*x)/(2*Sqrt[b^2 - 4*a*c])])/(Sqrt[b^2 - 4*a*c]*(1 + p
)))

Rule 624

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, -Simp[((a + b*x + c*
x^2)^(p + 1)*Hypergeometric2F1[-p, p + 1, p + 2, (b + q + 2*c*x)/(2*q)])/(q*(p + 1)*((q - b - 2*c*x)/(2*q))^(p
+ 1)), x]] /; FreeQ[{a, b, c, p}, x] && NeQ[b^2 - 4*a*c, 0] &&  !IntegerQ[4*p]

Rubi steps

\begin{align*} \int \left (a+b x+c x^2\right )^p \, dx &=-\frac{2^{1+p} \left (-\frac{b-\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}\right )^{-1-p} \left (a+b x+c x^2\right )^{1+p} \, _2F_1\left (-p,1+p;2+p;\frac{b+\sqrt{b^2-4 a c}+2 c x}{2 \sqrt{b^2-4 a c}}\right )}{\sqrt{b^2-4 a c} (1+p)}\\ \end{align*}

Mathematica [A]  time = 0.0611328, size = 126, normalized size = 1.03 $\frac{2^{p-1} \left (-\sqrt{b^2-4 a c}+b+2 c x\right ) \left (\frac{\sqrt{b^2-4 a c}+b+2 c x}{\sqrt{b^2-4 a c}}\right )^{-p} (a+x (b+c x))^p \, _2F_1\left (-p,p+1;p+2;\frac{-b-2 c x+\sqrt{b^2-4 a c}}{2 \sqrt{b^2-4 a c}}\right )}{c (p+1)}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(a + b*x + c*x^2)^p,x]

[Out]

(2^(-1 + p)*(b - Sqrt[b^2 - 4*a*c] + 2*c*x)*(a + x*(b + c*x))^p*Hypergeometric2F1[-p, 1 + p, 2 + p, (-b + Sqrt
[b^2 - 4*a*c] - 2*c*x)/(2*Sqrt[b^2 - 4*a*c])])/(c*(1 + p)*((b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c])^
p)

________________________________________________________________________________________

Maple [F]  time = 0.042, size = 0, normalized size = 0. \begin{align*} \int \left ( c{x}^{2}+bx+a \right ) ^{p}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^p,x)

[Out]

int((c*x^2+b*x+a)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (c x^{2} + b x + a\right )}^{p}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^p,x, algorithm="maxima")

[Out]

integrate((c*x^2 + b*x + a)^p, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (c x^{2} + b x + a\right )}^{p}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^p,x, algorithm="fricas")

[Out]

integral((c*x^2 + b*x + a)^p, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b x + c x^{2}\right )^{p}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**p,x)

[Out]

Integral((a + b*x + c*x**2)**p, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (c x^{2} + b x + a\right )}^{p}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^p,x, algorithm="giac")

[Out]

integrate((c*x^2 + b*x + a)^p, x)