### 3.2539 $$\int \frac{1}{(d+e x) (a+b x+c x^2)^{3/4}} \, dx$$

Optimal. Leaf size=709 $-\frac{\sqrt{e} \left (4 a c-b^2\right )^{3/4} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4} \tan ^{-1}\left (\frac{\sqrt{e} \sqrt [4]{4 a c-b^2} \sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}}{\sqrt{2} \sqrt [4]{c} \sqrt [4]{a e^2-b d e+c d^2}}\right )}{c^{3/4} \left (a+b x+c x^2\right )^{3/4} \left (a e^2-b d e+c d^2\right )^{3/4}}-\frac{\sqrt{e} \left (4 a c-b^2\right )^{3/4} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4} \tanh ^{-1}\left (\frac{\sqrt{e} \sqrt [4]{4 a c-b^2} \sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}}{\sqrt{2} \sqrt [4]{c} \sqrt [4]{a e^2-b d e+c d^2}}\right )}{c^{3/4} \left (a+b x+c x^2\right )^{3/4} \left (a e^2-b d e+c d^2\right )^{3/4}}-\frac{\left (b^2-4 a c\right ) \sqrt{\frac{(b+2 c x)^2}{b^2-4 a c}} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4} (2 c d-b e) \Pi \left (-\frac{\sqrt{4 a c-b^2} e}{2 \sqrt{c} \sqrt{c d^2-b e d+a e^2}};\left .\sin ^{-1}\left (\sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}\right )\right |-1\right )}{\sqrt{2} c (b+2 c x) \left (a+b x+c x^2\right )^{3/4} \left (a e^2-b d e+c d^2\right )}-\frac{\left (b^2-4 a c\right ) \sqrt{\frac{(b+2 c x)^2}{b^2-4 a c}} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4} (2 c d-b e) \Pi \left (\frac{\sqrt{4 a c-b^2} e}{2 \sqrt{c} \sqrt{c d^2-b e d+a e^2}};\left .\sin ^{-1}\left (\sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}\right )\right |-1\right )}{\sqrt{2} c (b+2 c x) \left (a+b x+c x^2\right )^{3/4} \left (a e^2-b d e+c d^2\right )}$

[Out]

-(((-b^2 + 4*a*c)^(3/4)*Sqrt[e]*(-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c)))^(3/4)*ArcTan[((-b^2 + 4*a*c)^(1/4)*Sq
rt[e]*(1 - (b + 2*c*x)^2/(b^2 - 4*a*c))^(1/4))/(Sqrt[2]*c^(1/4)*(c*d^2 - b*d*e + a*e^2)^(1/4))])/(c^(3/4)*(c*d
^2 - b*d*e + a*e^2)^(3/4)*(a + b*x + c*x^2)^(3/4))) - ((-b^2 + 4*a*c)^(3/4)*Sqrt[e]*(-((c*(a + b*x + c*x^2))/(
b^2 - 4*a*c)))^(3/4)*ArcTanh[((-b^2 + 4*a*c)^(1/4)*Sqrt[e]*(1 - (b + 2*c*x)^2/(b^2 - 4*a*c))^(1/4))/(Sqrt[2]*c
^(1/4)*(c*d^2 - b*d*e + a*e^2)^(1/4))])/(c^(3/4)*(c*d^2 - b*d*e + a*e^2)^(3/4)*(a + b*x + c*x^2)^(3/4)) - ((b^
2 - 4*a*c)*(2*c*d - b*e)*Sqrt[(b + 2*c*x)^2/(b^2 - 4*a*c)]*(-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c)))^(3/4)*Elli
pticPi[-(Sqrt[-b^2 + 4*a*c]*e)/(2*Sqrt[c]*Sqrt[c*d^2 - b*d*e + a*e^2]), ArcSin[(1 - (b + 2*c*x)^2/(b^2 - 4*a*c
))^(1/4)], -1])/(Sqrt[2]*c*(c*d^2 - b*d*e + a*e^2)*(b + 2*c*x)*(a + b*x + c*x^2)^(3/4)) - ((b^2 - 4*a*c)*(2*c*
d - b*e)*Sqrt[(b + 2*c*x)^2/(b^2 - 4*a*c)]*(-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c)))^(3/4)*EllipticPi[(Sqrt[-b^
2 + 4*a*c]*e)/(2*Sqrt[c]*Sqrt[c*d^2 - b*d*e + a*e^2]), ArcSin[(1 - (b + 2*c*x)^2/(b^2 - 4*a*c))^(1/4)], -1])/(
Sqrt[2]*c*(c*d^2 - b*d*e + a*e^2)*(b + 2*c*x)*(a + b*x + c*x^2)^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 1.57429, antiderivative size = 709, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 13, integrand size = 22, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.591, Rules used = {749, 748, 747, 401, 108, 409, 1213, 537, 444, 63, 212, 208, 205} $-\frac{\sqrt{e} \left (4 a c-b^2\right )^{3/4} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4} \tan ^{-1}\left (\frac{\sqrt{e} \sqrt [4]{4 a c-b^2} \sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}}{\sqrt{2} \sqrt [4]{c} \sqrt [4]{a e^2-b d e+c d^2}}\right )}{c^{3/4} \left (a+b x+c x^2\right )^{3/4} \left (a e^2-b d e+c d^2\right )^{3/4}}-\frac{\sqrt{e} \left (4 a c-b^2\right )^{3/4} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4} \tanh ^{-1}\left (\frac{\sqrt{e} \sqrt [4]{4 a c-b^2} \sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}}{\sqrt{2} \sqrt [4]{c} \sqrt [4]{a e^2-b d e+c d^2}}\right )}{c^{3/4} \left (a+b x+c x^2\right )^{3/4} \left (a e^2-b d e+c d^2\right )^{3/4}}-\frac{\left (b^2-4 a c\right ) \sqrt{\frac{(b+2 c x)^2}{b^2-4 a c}} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4} (2 c d-b e) \Pi \left (-\frac{\sqrt{4 a c-b^2} e}{2 \sqrt{c} \sqrt{c d^2-b e d+a e^2}};\left .\sin ^{-1}\left (\sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}\right )\right |-1\right )}{\sqrt{2} c (b+2 c x) \left (a+b x+c x^2\right )^{3/4} \left (a e^2-b d e+c d^2\right )}-\frac{\left (b^2-4 a c\right ) \sqrt{\frac{(b+2 c x)^2}{b^2-4 a c}} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4} (2 c d-b e) \Pi \left (\frac{\sqrt{4 a c-b^2} e}{2 \sqrt{c} \sqrt{c d^2-b e d+a e^2}};\left .\sin ^{-1}\left (\sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}\right )\right |-1\right )}{\sqrt{2} c (b+2 c x) \left (a+b x+c x^2\right )^{3/4} \left (a e^2-b d e+c d^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((d + e*x)*(a + b*x + c*x^2)^(3/4)),x]

[Out]

-(((-b^2 + 4*a*c)^(3/4)*Sqrt[e]*(-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c)))^(3/4)*ArcTan[((-b^2 + 4*a*c)^(1/4)*Sq
rt[e]*(1 - (b + 2*c*x)^2/(b^2 - 4*a*c))^(1/4))/(Sqrt[2]*c^(1/4)*(c*d^2 - b*d*e + a*e^2)^(1/4))])/(c^(3/4)*(c*d
^2 - b*d*e + a*e^2)^(3/4)*(a + b*x + c*x^2)^(3/4))) - ((-b^2 + 4*a*c)^(3/4)*Sqrt[e]*(-((c*(a + b*x + c*x^2))/(
b^2 - 4*a*c)))^(3/4)*ArcTanh[((-b^2 + 4*a*c)^(1/4)*Sqrt[e]*(1 - (b + 2*c*x)^2/(b^2 - 4*a*c))^(1/4))/(Sqrt[2]*c
^(1/4)*(c*d^2 - b*d*e + a*e^2)^(1/4))])/(c^(3/4)*(c*d^2 - b*d*e + a*e^2)^(3/4)*(a + b*x + c*x^2)^(3/4)) - ((b^
2 - 4*a*c)*(2*c*d - b*e)*Sqrt[(b + 2*c*x)^2/(b^2 - 4*a*c)]*(-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c)))^(3/4)*Elli
pticPi[-(Sqrt[-b^2 + 4*a*c]*e)/(2*Sqrt[c]*Sqrt[c*d^2 - b*d*e + a*e^2]), ArcSin[(1 - (b + 2*c*x)^2/(b^2 - 4*a*c
))^(1/4)], -1])/(Sqrt[2]*c*(c*d^2 - b*d*e + a*e^2)*(b + 2*c*x)*(a + b*x + c*x^2)^(3/4)) - ((b^2 - 4*a*c)*(2*c*
d - b*e)*Sqrt[(b + 2*c*x)^2/(b^2 - 4*a*c)]*(-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c)))^(3/4)*EllipticPi[(Sqrt[-b^
2 + 4*a*c]*e)/(2*Sqrt[c]*Sqrt[c*d^2 - b*d*e + a*e^2]), ArcSin[(1 - (b + 2*c*x)^2/(b^2 - 4*a*c))^(1/4)], -1])/(
Sqrt[2]*c*(c*d^2 - b*d*e + a*e^2)*(b + 2*c*x)*(a + b*x + c*x^2)^(3/4))

Rule 749

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)/((d_.) + (e_.)*(x_)), x_Symbol] :> Dist[(a + b*x + c*x^2)^p/(-((c
*(a + b*x + c*x^2))/(b^2 - 4*a*c)))^p, Int[(-((a*c)/(b^2 - 4*a*c)) - (b*c*x)/(b^2 - 4*a*c) - (c^2*x^2)/(b^2 -
4*a*c))^p/(d + e*x), x], x] /; FreeQ[{a, b, c, d, e, p}, x] &&  !GtQ[4*a - b^2/c, 0] && IntegerQ[4*p]

Rule 748

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)/((d_.) + (e_.)*(x_)), x_Symbol] :> Dist[1/((-4*c)/(b^2 - 4*a*c))^
p, Subst[Int[Simp[1 - x^2/(b^2 - 4*a*c), x]^p/Simp[2*c*d - b*e + e*x, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b
, c, d, e, p}, x] && GtQ[4*a - b^2/c, 0] && IntegerQ[4*p]

Rule 747

Int[1/(((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(3/4)), x_Symbol] :> Dist[d, Int[1/((d^2 - e^2*x^2)*(a + c*x^
2)^(3/4)), x], x] - Dist[e, Int[x/((d^2 - e^2*x^2)*(a + c*x^2)^(3/4)), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ
[c*d^2 + a*e^2, 0]

Rule 401

Int[1/(((a_) + (b_.)*(x_)^2)^(3/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Dist[Sqrt[-((b*x^2)/a)]/(2*x), Subst[I
nt[1/(Sqrt[-((b*x)/a)]*(a + b*x)^(3/4)*(c + d*x)), x], x, x^2], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d,
0]

Rule 108

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(3/4)), x_Symbol] :> Dist[-4, Subst[
Int[1/((b*e - a*f - b*x^4)*Sqrt[c - (d*e)/f + (d*x^4)/f]), x], x, (e + f*x)^(1/4)], x] /; FreeQ[{a, b, c, d, e
, f}, x] && GtQ[-(f/(d*e - c*f)), 0]

Rule 409

Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1
- Rt[-(d/c), 2]*x^2)), x], x] + Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-(d/c), 2]*x^2)), x], x] /; FreeQ
[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 1213

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[-(a*c), 2]}, Dist[Sqrt[-c],
Int[1/((d + e*x^2)*Sqrt[q + c*x^2]*Sqrt[q - c*x^2]), x], x]] /; FreeQ[{a, c, d, e}, x] && GtQ[a, 0] && LtQ[c,
0]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
!GtQ[a/b, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{(d+e x) \left (a+b x+c x^2\right )^{3/4}} \, dx &=\frac{\left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4} \int \frac{1}{(d+e x) \left (-\frac{a c}{b^2-4 a c}-\frac{b c x}{b^2-4 a c}-\frac{c^2 x^2}{b^2-4 a c}\right )^{3/4}} \, dx}{\left (a+b x+c x^2\right )^{3/4}}\\ &=\frac{\left (2 \sqrt{2} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (-\frac{c (2 c d-b e)}{b^2-4 a c}+e x\right ) \left (1-\frac{\left (b^2-4 a c\right ) x^2}{c^2}\right )^{3/4}} \, dx,x,-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right )}{\left (a+b x+c x^2\right )^{3/4}}\\ &=-\frac{\left (2 \sqrt{2} e \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4}\right ) \operatorname{Subst}\left (\int \frac{x}{\left (1-\frac{\left (b^2-4 a c\right ) x^2}{c^2}\right )^{3/4} \left (\frac{c^2 (2 c d-b e)^2}{\left (b^2-4 a c\right )^2}-e^2 x^2\right )} \, dx,x,-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right )}{\left (a+b x+c x^2\right )^{3/4}}-\frac{\left (2 \sqrt{2} c (2 c d-b e) \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1-\frac{\left (b^2-4 a c\right ) x^2}{c^2}\right )^{3/4} \left (\frac{c^2 (2 c d-b e)^2}{\left (b^2-4 a c\right )^2}-e^2 x^2\right )} \, dx,x,-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right )}{\left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^{3/4}}\\ &=-\frac{\left (\sqrt{2} e \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1-\frac{\left (b^2-4 a c\right ) x}{c^2}\right )^{3/4} \left (\frac{c^2 (2 c d-b e)^2}{\left (b^2-4 a c\right )^2}-e^2 x\right )} \, dx,x,\left (-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right )^2\right )}{\left (a+b x+c x^2\right )^{3/4}}-\frac{\left (\sqrt{2} c (2 c d-b e) \sqrt{\frac{\left (b^2-4 a c\right ) \left (-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right )^2}{c^2}} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{\frac{\left (b^2-4 a c\right ) x}{c^2}} \left (1-\frac{\left (b^2-4 a c\right ) x}{c^2}\right )^{3/4} \left (\frac{c^2 (2 c d-b e)^2}{\left (b^2-4 a c\right )^2}-e^2 x\right )} \, dx,x,\left (-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right )^2\right )}{\left (b^2-4 a c\right ) \left (-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right ) \left (a+b x+c x^2\right )^{3/4}}\\ &=\frac{\left (4 \sqrt{2} c^2 e \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4}\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{c^2 e^2}{b^2-4 a c}+\frac{c^2 (2 c d-b e)^2}{\left (b^2-4 a c\right )^2}+\frac{c^2 e^2 x^4}{b^2-4 a c}} \, dx,x,\sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}\right )}{\left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^{3/4}}+\frac{\left (4 \sqrt{2} c (2 c d-b e) \sqrt{\frac{\left (b^2-4 a c\right ) \left (-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right )^2}{c^2}} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^4} \left (-e^2+\frac{(2 c d-b e)^2}{b^2-4 a c}+e^2 x^4\right )} \, dx,x,\sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}\right )}{\left (b^2-4 a c\right ) \left (-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right ) \left (a+b x+c x^2\right )^{3/4}}\\ &=\frac{\left (\sqrt{2} \left (b^2-4 a c\right ) e \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4}\right ) \operatorname{Subst}\left (\int \frac{1}{2 \sqrt{c} \sqrt{c d^2-b d e+a e^2}-\sqrt{-b^2+4 a c} e x^2} \, dx,x,\sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}\right )}{\sqrt{c} \sqrt{c d^2-b d e+a e^2} \left (a+b x+c x^2\right )^{3/4}}+\frac{\left (\sqrt{2} \left (b^2-4 a c\right ) e \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4}\right ) \operatorname{Subst}\left (\int \frac{1}{2 \sqrt{c} \sqrt{c d^2-b d e+a e^2}+\sqrt{-b^2+4 a c} e x^2} \, dx,x,\sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}\right )}{\sqrt{c} \sqrt{c d^2-b d e+a e^2} \left (a+b x+c x^2\right )^{3/4}}+\frac{\left (2 \sqrt{2} c (2 c d-b e) \sqrt{\frac{\left (b^2-4 a c\right ) \left (-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right )^2}{c^2}} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1-\frac{\sqrt{-b^2+4 a c} e x^2}{2 \sqrt{c} \sqrt{c d^2-b d e+a e^2}}\right ) \sqrt{1-x^4}} \, dx,x,\sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}\right )}{\left (b^2-4 a c\right ) \left (-e^2+\frac{(2 c d-b e)^2}{b^2-4 a c}\right ) \left (-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right ) \left (a+b x+c x^2\right )^{3/4}}+\frac{\left (2 \sqrt{2} c (2 c d-b e) \sqrt{\frac{\left (b^2-4 a c\right ) \left (-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right )^2}{c^2}} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+\frac{\sqrt{-b^2+4 a c} e x^2}{2 \sqrt{c} \sqrt{c d^2-b d e+a e^2}}\right ) \sqrt{1-x^4}} \, dx,x,\sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}\right )}{\left (b^2-4 a c\right ) \left (-e^2+\frac{(2 c d-b e)^2}{b^2-4 a c}\right ) \left (-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right ) \left (a+b x+c x^2\right )^{3/4}}\\ &=-\frac{\left (-b^2+4 a c\right )^{3/4} \sqrt{e} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{-b^2+4 a c} \sqrt{e} \sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}}{\sqrt{2} \sqrt [4]{c} \sqrt [4]{c d^2-b d e+a e^2}}\right )}{c^{3/4} \left (c d^2-b d e+a e^2\right )^{3/4} \left (a+b x+c x^2\right )^{3/4}}-\frac{\left (-b^2+4 a c\right )^{3/4} \sqrt{e} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{-b^2+4 a c} \sqrt{e} \sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}}{\sqrt{2} \sqrt [4]{c} \sqrt [4]{c d^2-b d e+a e^2}}\right )}{c^{3/4} \left (c d^2-b d e+a e^2\right )^{3/4} \left (a+b x+c x^2\right )^{3/4}}+\frac{\left (2 \sqrt{2} c (2 c d-b e) \sqrt{\frac{\left (b^2-4 a c\right ) \left (-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right )^2}{c^2}} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+x^2} \left (1-\frac{\sqrt{-b^2+4 a c} e x^2}{2 \sqrt{c} \sqrt{c d^2-b d e+a e^2}}\right )} \, dx,x,\sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}\right )}{\left (b^2-4 a c\right ) \left (-e^2+\frac{(2 c d-b e)^2}{b^2-4 a c}\right ) \left (-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right ) \left (a+b x+c x^2\right )^{3/4}}+\frac{\left (2 \sqrt{2} c (2 c d-b e) \sqrt{\frac{\left (b^2-4 a c\right ) \left (-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right )^2}{c^2}} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+x^2} \left (1+\frac{\sqrt{-b^2+4 a c} e x^2}{2 \sqrt{c} \sqrt{c d^2-b d e+a e^2}}\right )} \, dx,x,\sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}\right )}{\left (b^2-4 a c\right ) \left (-e^2+\frac{(2 c d-b e)^2}{b^2-4 a c}\right ) \left (-\frac{b c}{b^2-4 a c}-\frac{2 c^2 x}{b^2-4 a c}\right ) \left (a+b x+c x^2\right )^{3/4}}\\ &=-\frac{\left (-b^2+4 a c\right )^{3/4} \sqrt{e} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{-b^2+4 a c} \sqrt{e} \sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}}{\sqrt{2} \sqrt [4]{c} \sqrt [4]{c d^2-b d e+a e^2}}\right )}{c^{3/4} \left (c d^2-b d e+a e^2\right )^{3/4} \left (a+b x+c x^2\right )^{3/4}}-\frac{\left (-b^2+4 a c\right )^{3/4} \sqrt{e} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{-b^2+4 a c} \sqrt{e} \sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}}{\sqrt{2} \sqrt [4]{c} \sqrt [4]{c d^2-b d e+a e^2}}\right )}{c^{3/4} \left (c d^2-b d e+a e^2\right )^{3/4} \left (a+b x+c x^2\right )^{3/4}}-\frac{\left (b^2-4 a c\right ) (2 c d-b e) \sqrt{\frac{(b+2 c x)^2}{b^2-4 a c}} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4} \Pi \left (-\frac{\sqrt{-b^2+4 a c} e}{2 \sqrt{c} \sqrt{c d^2-b d e+a e^2}};\left .\sin ^{-1}\left (\sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}\right )\right |-1\right )}{\sqrt{2} c \left (c d^2-b d e+a e^2\right ) (b+2 c x) \left (a+b x+c x^2\right )^{3/4}}-\frac{\left (b^2-4 a c\right ) (2 c d-b e) \sqrt{\frac{(b+2 c x)^2}{b^2-4 a c}} \left (-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}\right )^{3/4} \Pi \left (\frac{\sqrt{-b^2+4 a c} e}{2 \sqrt{c} \sqrt{c d^2-b d e+a e^2}};\left .\sin ^{-1}\left (\sqrt [4]{1-\frac{(b+2 c x)^2}{b^2-4 a c}}\right )\right |-1\right )}{\sqrt{2} c \left (c d^2-b d e+a e^2\right ) (b+2 c x) \left (a+b x+c x^2\right )^{3/4}}\\ \end{align*}

Mathematica [A]  time = 1.74005, size = 533, normalized size = 0.75 $\frac{\sqrt [4]{a+x (b+c x)} \left (-\sqrt{2} \sqrt [4]{c} \sqrt{e} (b+2 c x) \sqrt [4]{e (a e-b d)+c d^2} \left (\tan ^{-1}\left (\frac{\sqrt{e} \sqrt [4]{4 a c-b^2} \sqrt [4]{\frac{c (a+x (b+c x))}{4 a c-b^2}}}{\sqrt [4]{c} \sqrt [4]{e (a e-b d)+c d^2}}\right )+\tanh ^{-1}\left (\frac{\sqrt{e} \sqrt [4]{4 a c-b^2} \sqrt [4]{\frac{c (a+x (b+c x))}{4 a c-b^2}}}{\sqrt [4]{c} \sqrt [4]{e (a e-b d)+c d^2}}\right )\right )+\sqrt [4]{4 a c-b^2} \sqrt{\frac{(b+2 c x)^2}{b^2-4 a c}} (b e-2 c d) \Pi \left (-\frac{\sqrt{4 a c-b^2} e}{2 \sqrt{c} \sqrt{c d^2+e (a e-b d)}};\left .-\sin ^{-1}\left (\sqrt{2} \sqrt [4]{\frac{c (a+x (b+c x))}{4 a c-b^2}}\right )\right |-1\right )+\sqrt [4]{4 a c-b^2} \sqrt{\frac{(b+2 c x)^2}{b^2-4 a c}} (b e-2 c d) \Pi \left (\frac{\sqrt{4 a c-b^2} e}{2 \sqrt{c} \sqrt{c d^2+e (a e-b d)}};\left .-\sin ^{-1}\left (\sqrt{2} \sqrt [4]{\frac{c (a+x (b+c x))}{4 a c-b^2}}\right )\right |-1\right )\right )}{\sqrt{2} \sqrt [4]{4 a c-b^2} (b+2 c x) \sqrt [4]{\frac{c (a+x (b+c x))}{4 a c-b^2}} \left (e (a e-b d)+c d^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((d + e*x)*(a + b*x + c*x^2)^(3/4)),x]

[Out]

((a + x*(b + c*x))^(1/4)*(-(Sqrt[2]*c^(1/4)*Sqrt[e]*(c*d^2 + e*(-(b*d) + a*e))^(1/4)*(b + 2*c*x)*(ArcTan[((-b^
2 + 4*a*c)^(1/4)*Sqrt[e]*((c*(a + x*(b + c*x)))/(-b^2 + 4*a*c))^(1/4))/(c^(1/4)*(c*d^2 + e*(-(b*d) + a*e))^(1/
4))] + ArcTanh[((-b^2 + 4*a*c)^(1/4)*Sqrt[e]*((c*(a + x*(b + c*x)))/(-b^2 + 4*a*c))^(1/4))/(c^(1/4)*(c*d^2 + e
*(-(b*d) + a*e))^(1/4))])) + (-b^2 + 4*a*c)^(1/4)*(-2*c*d + b*e)*Sqrt[(b + 2*c*x)^2/(b^2 - 4*a*c)]*EllipticPi[
-(Sqrt[-b^2 + 4*a*c]*e)/(2*Sqrt[c]*Sqrt[c*d^2 + e*(-(b*d) + a*e)]), -ArcSin[Sqrt[2]*((c*(a + x*(b + c*x)))/(-b
^2 + 4*a*c))^(1/4)], -1] + (-b^2 + 4*a*c)^(1/4)*(-2*c*d + b*e)*Sqrt[(b + 2*c*x)^2/(b^2 - 4*a*c)]*EllipticPi[(S
qrt[-b^2 + 4*a*c]*e)/(2*Sqrt[c]*Sqrt[c*d^2 + e*(-(b*d) + a*e)]), -ArcSin[Sqrt[2]*((c*(a + x*(b + c*x)))/(-b^2
+ 4*a*c))^(1/4)], -1]))/(Sqrt[2]*(-b^2 + 4*a*c)^(1/4)*(c*d^2 + e*(-(b*d) + a*e))*(b + 2*c*x)*((c*(a + x*(b + c
*x)))/(-b^2 + 4*a*c))^(1/4))

________________________________________________________________________________________

Maple [F]  time = 1.242, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{ex+d} \left ( c{x}^{2}+bx+a \right ) ^{-{\frac{3}{4}}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)/(c*x^2+b*x+a)^(3/4),x)

[Out]

int(1/(e*x+d)/(c*x^2+b*x+a)^(3/4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{2} + b x + a\right )}^{\frac{3}{4}}{\left (e x + d\right )}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x^2+b*x+a)^(3/4),x, algorithm="maxima")

[Out]

integrate(1/((c*x^2 + b*x + a)^(3/4)*(e*x + d)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x^2+b*x+a)^(3/4),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (d + e x\right ) \left (a + b x + c x^{2}\right )^{\frac{3}{4}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x**2+b*x+a)**(3/4),x)

[Out]

Integral(1/((d + e*x)*(a + b*x + c*x**2)**(3/4)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{2} + b x + a\right )}^{\frac{3}{4}}{\left (e x + d\right )}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x^2+b*x+a)^(3/4),x, algorithm="giac")

[Out]

integrate(1/((c*x^2 + b*x + a)^(3/4)*(e*x + d)), x)