### 3.2512 $$\int (d+e x) \sqrt [4]{a+b x+c x^2} \, dx$$

Optimal. Leaf size=241 $-\frac{\left (b^2-4 a c\right )^{5/4} \sqrt{\frac{(b+2 c x)^2}{\left (b^2-4 a c\right ) \left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}+1\right )^2}} \left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}+1\right ) (2 c d-b e) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt [4]{a+b x+c x^2}}{\sqrt [4]{b^2-4 a c}}\right ),\frac{1}{2}\right )}{12 \sqrt{2} c^{9/4} (b+2 c x)}+\frac{(b+2 c x) \sqrt [4]{a+b x+c x^2} (2 c d-b e)}{6 c^2}+\frac{2 e \left (a+b x+c x^2\right )^{5/4}}{5 c}$

[Out]

((2*c*d - b*e)*(b + 2*c*x)*(a + b*x + c*x^2)^(1/4))/(6*c^2) + (2*e*(a + b*x + c*x^2)^(5/4))/(5*c) - ((b^2 - 4*
a*c)^(5/4)*(2*c*d - b*e)*Sqrt[(b + 2*c*x)^2/((b^2 - 4*a*c)*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4
*a*c])^2)]*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c])*EllipticF[2*ArcTan[(Sqrt[2]*c^(1/4)*(a +
b*x + c*x^2)^(1/4))/(b^2 - 4*a*c)^(1/4)], 1/2])/(12*Sqrt[2]*c^(9/4)*(b + 2*c*x))

________________________________________________________________________________________

Rubi [A]  time = 0.183802, antiderivative size = 241, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 20, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.2, Rules used = {640, 612, 623, 220} $-\frac{\left (b^2-4 a c\right )^{5/4} \sqrt{\frac{(b+2 c x)^2}{\left (b^2-4 a c\right ) \left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}+1\right )^2}} \left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}+1\right ) (2 c d-b e) F\left (2 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt [4]{c x^2+b x+a}}{\sqrt [4]{b^2-4 a c}}\right )|\frac{1}{2}\right )}{12 \sqrt{2} c^{9/4} (b+2 c x)}+\frac{(b+2 c x) \sqrt [4]{a+b x+c x^2} (2 c d-b e)}{6 c^2}+\frac{2 e \left (a+b x+c x^2\right )^{5/4}}{5 c}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)*(a + b*x + c*x^2)^(1/4),x]

[Out]

((2*c*d - b*e)*(b + 2*c*x)*(a + b*x + c*x^2)^(1/4))/(6*c^2) + (2*e*(a + b*x + c*x^2)^(5/4))/(5*c) - ((b^2 - 4*
a*c)^(5/4)*(2*c*d - b*e)*Sqrt[(b + 2*c*x)^2/((b^2 - 4*a*c)*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4
*a*c])^2)]*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c])*EllipticF[2*ArcTan[(Sqrt[2]*c^(1/4)*(a +
b*x + c*x^2)^(1/4))/(b^2 - 4*a*c)^(1/4)], 1/2])/(12*Sqrt[2]*c^(9/4)*(b + 2*c*x))

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
&& NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 623

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{d = Denominator[p]}, Dist[(d*Sqrt[(b + 2*c*x)
^2])/(b + 2*c*x), Subst[Int[x^(d*(p + 1) - 1)/Sqrt[b^2 - 4*a*c + 4*c*x^d], x], x, (a + b*x + c*x^2)^(1/d)], x]
/; 3 <= d <= 4] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && RationalQ[p]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int (d+e x) \sqrt [4]{a+b x+c x^2} \, dx &=\frac{2 e \left (a+b x+c x^2\right )^{5/4}}{5 c}+\frac{(2 c d-b e) \int \sqrt [4]{a+b x+c x^2} \, dx}{2 c}\\ &=\frac{(2 c d-b e) (b+2 c x) \sqrt [4]{a+b x+c x^2}}{6 c^2}+\frac{2 e \left (a+b x+c x^2\right )^{5/4}}{5 c}-\frac{\left (\left (b^2-4 a c\right ) (2 c d-b e)\right ) \int \frac{1}{\left (a+b x+c x^2\right )^{3/4}} \, dx}{24 c^2}\\ &=\frac{(2 c d-b e) (b+2 c x) \sqrt [4]{a+b x+c x^2}}{6 c^2}+\frac{2 e \left (a+b x+c x^2\right )^{5/4}}{5 c}-\frac{\left (\left (b^2-4 a c\right ) (2 c d-b e) \sqrt{(b+2 c x)^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b^2-4 a c+4 c x^4}} \, dx,x,\sqrt [4]{a+b x+c x^2}\right )}{6 c^2 (b+2 c x)}\\ &=\frac{(2 c d-b e) (b+2 c x) \sqrt [4]{a+b x+c x^2}}{6 c^2}+\frac{2 e \left (a+b x+c x^2\right )^{5/4}}{5 c}-\frac{\left (b^2-4 a c\right )^{5/4} (2 c d-b e) \sqrt{\frac{(b+2 c x)^2}{\left (b^2-4 a c\right ) \left (1+\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}\right )^2}} \left (1+\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt [4]{a+b x+c x^2}}{\sqrt [4]{b^2-4 a c}}\right )|\frac{1}{2}\right )}{12 \sqrt{2} c^{9/4} (b+2 c x)}\\ \end{align*}

Mathematica [A]  time = 0.258339, size = 140, normalized size = 0.58 $\frac{5 (2 c d-b e) \left (2 c (b+2 c x) (a+x (b+c x))-\sqrt{2} \left (b^2-4 a c\right )^{3/2} \left (\frac{c (a+x (b+c x))}{4 a c-b^2}\right )^{3/4} \text{EllipticF}\left (\frac{1}{2} \sin ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right ),2\right )\right )+24 c^2 e (a+x (b+c x))^2}{60 c^3 (a+x (b+c x))^{3/4}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)*(a + b*x + c*x^2)^(1/4),x]

[Out]

(24*c^2*e*(a + x*(b + c*x))^2 + 5*(2*c*d - b*e)*(2*c*(b + 2*c*x)*(a + x*(b + c*x)) - Sqrt[2]*(b^2 - 4*a*c)^(3/
2)*((c*(a + x*(b + c*x)))/(-b^2 + 4*a*c))^(3/4)*EllipticF[ArcSin[(b + 2*c*x)/Sqrt[b^2 - 4*a*c]]/2, 2]))/(60*c^
3*(a + x*(b + c*x))^(3/4))

________________________________________________________________________________________

Maple [F]  time = 0.99, size = 0, normalized size = 0. \begin{align*} \int \left ( ex+d \right ) \sqrt [4]{c{x}^{2}+bx+a}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)*(c*x^2+b*x+a)^(1/4),x)

[Out]

int((e*x+d)*(c*x^2+b*x+a)^(1/4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (c x^{2} + b x + a\right )}^{\frac{1}{4}}{\left (e x + d\right )}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(c*x^2+b*x+a)^(1/4),x, algorithm="maxima")

[Out]

integrate((c*x^2 + b*x + a)^(1/4)*(e*x + d), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (c x^{2} + b x + a\right )}^{\frac{1}{4}}{\left (e x + d\right )}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(c*x^2+b*x+a)^(1/4),x, algorithm="fricas")

[Out]

integral((c*x^2 + b*x + a)^(1/4)*(e*x + d), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d + e x\right ) \sqrt [4]{a + b x + c x^{2}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(c*x**2+b*x+a)**(1/4),x)

[Out]

Integral((d + e*x)*(a + b*x + c*x**2)**(1/4), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (c x^{2} + b x + a\right )}^{\frac{1}{4}}{\left (e x + d\right )}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(c*x^2+b*x+a)^(1/4),x, algorithm="giac")

[Out]

integrate((c*x^2 + b*x + a)^(1/4)*(e*x + d), x)