### 3.2481 $$\int \frac{1}{(d+e x)^{3/2} (a+b x+c x^2)^{5/2}} \, dx$$

Optimal. Leaf size=918 $-\frac{\sqrt{2} \sqrt{d+e x} \sqrt{-\frac{c \left (c x^2+b x+a\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right ) \left (16 c^4 d^4-4 c^3 e (8 b d-15 a e) d^2-8 b^4 e^4+b^2 c e^3 (7 b d+57 a e)+3 c^2 e^2 \left (3 b^2 d^2-20 a b e d-28 a^2 e^2\right )\right )}{3 \left (b^2-4 a c\right )^{3/2} \left (c d^2-b e d+a e^2\right )^3 \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{c x^2+b x+a}}+\frac{2 e \sqrt{c x^2+b x+a} \left (16 c^4 d^4-4 c^3 e (8 b d-15 a e) d^2-8 b^4 e^4+b^2 c e^3 (7 b d+57 a e)+3 c^2 e^2 \left (3 b^2 d^2-20 a b e d-28 a^2 e^2\right )\right )}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b e d+a e^2\right )^3 \sqrt{d+e x}}+\frac{8 \sqrt{2} (2 c d-b e) \left (2 c^2 d^2-b^2 e^2-2 c e (b d-3 a e)\right ) \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{-\frac{c \left (c x^2+b x+a\right )}{b^2-4 a c}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right ),-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 \left (b^2-4 a c\right )^{3/2} \left (c d^2-b e d+a e^2\right )^2 \sqrt{d+e x} \sqrt{c x^2+b x+a}}-\frac{2 \left (5 a c e (2 c d-b e)^2-4 c \left (2 c^2 d^2-b^2 e^2-2 c e (b d-3 a e)\right ) x (2 c d-b e)-\left (-e b^2+c d b+2 a c e\right ) \left (8 c^2 d^2-4 b^2 e^2-c e (3 b d-14 a e)\right )\right )}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b e d+a e^2\right )^2 \sqrt{d+e x} \sqrt{c x^2+b x+a}}-\frac{2 \left (-e b^2+c d b+2 a c e+c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right ) \left (c d^2-b e d+a e^2\right ) \sqrt{d+e x} \left (c x^2+b x+a\right )^{3/2}}$

[Out]

(-2*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x))/(3*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)*Sqrt[d + e*x]*(a +
b*x + c*x^2)^(3/2)) - (2*(5*a*c*e*(2*c*d - b*e)^2 - (b*c*d - b^2*e + 2*a*c*e)*(8*c^2*d^2 - 4*b^2*e^2 - c*e*(3
*b*d - 14*a*e)) - 4*c*(2*c*d - b*e)*(2*c^2*d^2 - b^2*e^2 - 2*c*e*(b*d - 3*a*e))*x))/(3*(b^2 - 4*a*c)^2*(c*d^2
- b*d*e + a*e^2)^2*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2]) + (2*e*(16*c^4*d^4 - 8*b^4*e^4 - 4*c^3*d^2*e*(8*b*d -
15*a*e) + b^2*c*e^3*(7*b*d + 57*a*e) + 3*c^2*e^2*(3*b^2*d^2 - 20*a*b*d*e - 28*a^2*e^2))*Sqrt[a + b*x + c*x^2])
/(3*(b^2 - 4*a*c)^2*(c*d^2 - b*d*e + a*e^2)^3*Sqrt[d + e*x]) - (Sqrt[2]*(16*c^4*d^4 - 8*b^4*e^4 - 4*c^3*d^2*e*
(8*b*d - 15*a*e) + b^2*c*e^3*(7*b*d + 57*a*e) + 3*c^2*e^2*(3*b^2*d^2 - 20*a*b*d*e - 28*a^2*e^2))*Sqrt[d + e*x]
*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 -
4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(3*(b^2 - 4*a*c)^(3/2)*(c*d^
2 - b*d*e + a*e^2)^3*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) + (8*Sqrt[
2]*(2*c*d - b*e)*(2*c^2*d^2 - b^2*e^2 - 2*c*e*(b*d - 3*a*e))*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c
])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt
[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(3*(b^2 - 4*a*c)^(3/2)
*(c*d^2 - b*d*e + a*e^2)^2*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 1.46332, antiderivative size = 918, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 24, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.292, Rules used = {740, 822, 834, 843, 718, 424, 419} $-\frac{\sqrt{2} \sqrt{d+e x} \sqrt{-\frac{c \left (c x^2+b x+a\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right ) \left (16 c^4 d^4-4 c^3 e (8 b d-15 a e) d^2-8 b^4 e^4+b^2 c e^3 (7 b d+57 a e)+3 c^2 e^2 \left (3 b^2 d^2-20 a b e d-28 a^2 e^2\right )\right )}{3 \left (b^2-4 a c\right )^{3/2} \left (c d^2-b e d+a e^2\right )^3 \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{c x^2+b x+a}}+\frac{2 e \sqrt{c x^2+b x+a} \left (16 c^4 d^4-4 c^3 e (8 b d-15 a e) d^2-8 b^4 e^4+b^2 c e^3 (7 b d+57 a e)+3 c^2 e^2 \left (3 b^2 d^2-20 a b e d-28 a^2 e^2\right )\right )}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b e d+a e^2\right )^3 \sqrt{d+e x}}+\frac{8 \sqrt{2} (2 c d-b e) \left (2 c^2 d^2-b^2 e^2-2 c e (b d-3 a e)\right ) \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{-\frac{c \left (c x^2+b x+a\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 \left (b^2-4 a c\right )^{3/2} \left (c d^2-b e d+a e^2\right )^2 \sqrt{d+e x} \sqrt{c x^2+b x+a}}-\frac{2 \left (5 a c e (2 c d-b e)^2-4 c \left (2 c^2 d^2-b^2 e^2-2 c e (b d-3 a e)\right ) x (2 c d-b e)-\left (-e b^2+c d b+2 a c e\right ) \left (8 c^2 d^2-4 b^2 e^2-c e (3 b d-14 a e)\right )\right )}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b e d+a e^2\right )^2 \sqrt{d+e x} \sqrt{c x^2+b x+a}}-\frac{2 \left (-e b^2+c d b+2 a c e+c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right ) \left (c d^2-b e d+a e^2\right ) \sqrt{d+e x} \left (c x^2+b x+a\right )^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((d + e*x)^(3/2)*(a + b*x + c*x^2)^(5/2)),x]

[Out]

(-2*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x))/(3*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)*Sqrt[d + e*x]*(a +
b*x + c*x^2)^(3/2)) - (2*(5*a*c*e*(2*c*d - b*e)^2 - (b*c*d - b^2*e + 2*a*c*e)*(8*c^2*d^2 - 4*b^2*e^2 - c*e*(3
*b*d - 14*a*e)) - 4*c*(2*c*d - b*e)*(2*c^2*d^2 - b^2*e^2 - 2*c*e*(b*d - 3*a*e))*x))/(3*(b^2 - 4*a*c)^2*(c*d^2
- b*d*e + a*e^2)^2*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2]) + (2*e*(16*c^4*d^4 - 8*b^4*e^4 - 4*c^3*d^2*e*(8*b*d -
15*a*e) + b^2*c*e^3*(7*b*d + 57*a*e) + 3*c^2*e^2*(3*b^2*d^2 - 20*a*b*d*e - 28*a^2*e^2))*Sqrt[a + b*x + c*x^2])
/(3*(b^2 - 4*a*c)^2*(c*d^2 - b*d*e + a*e^2)^3*Sqrt[d + e*x]) - (Sqrt[2]*(16*c^4*d^4 - 8*b^4*e^4 - 4*c^3*d^2*e*
(8*b*d - 15*a*e) + b^2*c*e^3*(7*b*d + 57*a*e) + 3*c^2*e^2*(3*b^2*d^2 - 20*a*b*d*e - 28*a^2*e^2))*Sqrt[d + e*x]
*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 -
4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(3*(b^2 - 4*a*c)^(3/2)*(c*d^
2 - b*d*e + a*e^2)^3*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) + (8*Sqrt[
2]*(2*c*d - b*e)*(2*c^2*d^2 - b^2*e^2 - 2*c*e*(b*d - 3*a*e))*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c
])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt
[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(3*(b^2 - 4*a*c)^(3/2)
*(c*d^2 - b*d*e + a*e^2)^2*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

Rule 740

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e
+ a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*Simp[b*c*d*e*(2*p - m
+ 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x
, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b
*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 822

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x
)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 834

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m
+ 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1)
+ b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{1}{(d+e x)^{3/2} \left (a+b x+c x^2\right )^{5/2}} \, dx &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt{d+e x} \left (a+b x+c x^2\right )^{3/2}}-\frac{2 \int \frac{\frac{1}{2} \left (8 c^2 d^2-3 b c d e-4 b^2 e^2+14 a c e^2\right )+\frac{5}{2} c e (2 c d-b e) x}{(d+e x)^{3/2} \left (a+b x+c x^2\right )^{3/2}} \, dx}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )}\\ &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt{d+e x} \left (a+b x+c x^2\right )^{3/2}}-\frac{2 \left (5 a c e (2 c d-b e)^2-\left (b c d-b^2 e+2 a c e\right ) \left (8 c^2 d^2-4 b^2 e^2-c e (3 b d-14 a e)\right )-4 c (2 c d-b e) \left (2 c^2 d^2-b^2 e^2-2 c e (b d-3 a e)\right ) x\right )}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}+\frac{4 \int \frac{-\frac{1}{4} e \left (3 b^3 c d e^2-8 b^4 e^3+12 a c^2 e \left (c d^2-7 a e^2\right )-4 b c^2 d \left (2 c d^2+9 a e^2\right )+3 b^2 c e \left (3 c d^2+19 a e^2\right )\right )+c e (2 c d-b e) \left (2 c^2 d^2-b^2 e^2-2 c e (b d-3 a e)\right ) x}{(d+e x)^{3/2} \sqrt{a+b x+c x^2}} \, dx}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^2}\\ &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt{d+e x} \left (a+b x+c x^2\right )^{3/2}}-\frac{2 \left (5 a c e (2 c d-b e)^2-\left (b c d-b^2 e+2 a c e\right ) \left (8 c^2 d^2-4 b^2 e^2-c e (3 b d-14 a e)\right )-4 c (2 c d-b e) \left (2 c^2 d^2-b^2 e^2-2 c e (b d-3 a e)\right ) x\right )}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}+\frac{2 e \left (16 c^4 d^4-8 b^4 e^4-4 c^3 d^2 e (8 b d-15 a e)+b^2 c e^3 (7 b d+57 a e)+3 c^2 e^2 \left (3 b^2 d^2-20 a b d e-28 a^2 e^2\right )\right ) \sqrt{a+b x+c x^2}}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^3 \sqrt{d+e x}}-\frac{8 \int \frac{-\frac{1}{8} c e \left (4 b^4 d e^3+3 b^2 c d e \left (5 c d^2-11 a e^2\right )+4 a c^2 d e \left (c d^2+33 a e^2\right )-b^3 \left (3 c d^2 e^2-4 a e^4\right )-4 b c \left (2 c^2 d^4+9 a c d^2 e^2+6 a^2 e^4\right )\right )+\frac{1}{8} c e \left (16 c^4 d^4-8 b^4 e^4-4 c^3 d^2 e (8 b d-15 a e)+b^2 c e^3 (7 b d+57 a e)+3 c^2 e^2 \left (3 b^2 d^2-20 a b d e-28 a^2 e^2\right )\right ) x}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^3}\\ &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt{d+e x} \left (a+b x+c x^2\right )^{3/2}}-\frac{2 \left (5 a c e (2 c d-b e)^2-\left (b c d-b^2 e+2 a c e\right ) \left (8 c^2 d^2-4 b^2 e^2-c e (3 b d-14 a e)\right )-4 c (2 c d-b e) \left (2 c^2 d^2-b^2 e^2-2 c e (b d-3 a e)\right ) x\right )}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}+\frac{2 e \left (16 c^4 d^4-8 b^4 e^4-4 c^3 d^2 e (8 b d-15 a e)+b^2 c e^3 (7 b d+57 a e)+3 c^2 e^2 \left (3 b^2 d^2-20 a b d e-28 a^2 e^2\right )\right ) \sqrt{a+b x+c x^2}}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^3 \sqrt{d+e x}}+\frac{\left (4 c (2 c d-b e) \left (2 c^2 d^2-b^2 e^2-2 c e (b d-3 a e)\right )\right ) \int \frac{1}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^2}-\frac{\left (c \left (16 c^4 d^4-8 b^4 e^4-4 c^3 d^2 e (8 b d-15 a e)+b^2 c e^3 (7 b d+57 a e)+3 c^2 e^2 \left (3 b^2 d^2-20 a b d e-28 a^2 e^2\right )\right )\right ) \int \frac{\sqrt{d+e x}}{\sqrt{a+b x+c x^2}} \, dx}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^3}\\ &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt{d+e x} \left (a+b x+c x^2\right )^{3/2}}-\frac{2 \left (5 a c e (2 c d-b e)^2-\left (b c d-b^2 e+2 a c e\right ) \left (8 c^2 d^2-4 b^2 e^2-c e (3 b d-14 a e)\right )-4 c (2 c d-b e) \left (2 c^2 d^2-b^2 e^2-2 c e (b d-3 a e)\right ) x\right )}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}+\frac{2 e \left (16 c^4 d^4-8 b^4 e^4-4 c^3 d^2 e (8 b d-15 a e)+b^2 c e^3 (7 b d+57 a e)+3 c^2 e^2 \left (3 b^2 d^2-20 a b d e-28 a^2 e^2\right )\right ) \sqrt{a+b x+c x^2}}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^3 \sqrt{d+e x}}-\frac{\left (\sqrt{2} \left (16 c^4 d^4-8 b^4 e^4-4 c^3 d^2 e (8 b d-15 a e)+b^2 c e^3 (7 b d+57 a e)+3 c^2 e^2 \left (3 b^2 d^2-20 a b d e-28 a^2 e^2\right )\right ) \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{3 \left (b^2-4 a c\right )^{3/2} \left (c d^2-b d e+a e^2\right )^3 \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{a+b x+c x^2}}+\frac{\left (8 \sqrt{2} (2 c d-b e) \left (2 c^2 d^2-b^2 e^2-2 c e (b d-3 a e)\right ) \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{3 \left (b^2-4 a c\right )^{3/2} \left (c d^2-b d e+a e^2\right )^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt{d+e x} \left (a+b x+c x^2\right )^{3/2}}-\frac{2 \left (5 a c e (2 c d-b e)^2-\left (b c d-b^2 e+2 a c e\right ) \left (8 c^2 d^2-4 b^2 e^2-c e (3 b d-14 a e)\right )-4 c (2 c d-b e) \left (2 c^2 d^2-b^2 e^2-2 c e (b d-3 a e)\right ) x\right )}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}+\frac{2 e \left (16 c^4 d^4-8 b^4 e^4-4 c^3 d^2 e (8 b d-15 a e)+b^2 c e^3 (7 b d+57 a e)+3 c^2 e^2 \left (3 b^2 d^2-20 a b d e-28 a^2 e^2\right )\right ) \sqrt{a+b x+c x^2}}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^3 \sqrt{d+e x}}-\frac{\sqrt{2} \left (16 c^4 d^4-8 b^4 e^4-4 c^3 d^2 e (8 b d-15 a e)+b^2 c e^3 (7 b d+57 a e)+3 c^2 e^2 \left (3 b^2 d^2-20 a b d e-28 a^2 e^2\right )\right ) \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 \left (b^2-4 a c\right )^{3/2} \left (c d^2-b d e+a e^2\right )^3 \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{a+b x+c x^2}}+\frac{8 \sqrt{2} (2 c d-b e) \left (2 c^2 d^2-b^2 e^2-2 c e (b d-3 a e)\right ) \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 \left (b^2-4 a c\right )^{3/2} \left (c d^2-b d e+a e^2\right )^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 14.0416, size = 7870, normalized size = 8.57 $\text{Result too large to show}$

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((d + e*x)^(3/2)*(a + b*x + c*x^2)^(5/2)),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [B]  time = 0.517, size = 27157, normalized size = 29.6 \begin{align*} \text{output too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(3/2)/(c*x^2+b*x+a)^(5/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{2} + b x + a\right )}^{\frac{5}{2}}{\left (e x + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x+a)^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((c*x^2 + b*x + a)^(5/2)*(e*x + d)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + b x + a} \sqrt{e x + d}}{c^{3} e^{2} x^{8} +{\left (2 \, c^{3} d e + 3 \, b c^{2} e^{2}\right )} x^{7} +{\left (c^{3} d^{2} + 6 \, b c^{2} d e + 3 \,{\left (b^{2} c + a c^{2}\right )} e^{2}\right )} x^{6} +{\left (3 \, b c^{2} d^{2} + 6 \,{\left (b^{2} c + a c^{2}\right )} d e +{\left (b^{3} + 6 \, a b c\right )} e^{2}\right )} x^{5} + a^{3} d^{2} +{\left (3 \,{\left (b^{2} c + a c^{2}\right )} d^{2} + 2 \,{\left (b^{3} + 6 \, a b c\right )} d e + 3 \,{\left (a b^{2} + a^{2} c\right )} e^{2}\right )} x^{4} +{\left (3 \, a^{2} b e^{2} +{\left (b^{3} + 6 \, a b c\right )} d^{2} + 6 \,{\left (a b^{2} + a^{2} c\right )} d e\right )} x^{3} +{\left (6 \, a^{2} b d e + a^{3} e^{2} + 3 \,{\left (a b^{2} + a^{2} c\right )} d^{2}\right )} x^{2} +{\left (3 \, a^{2} b d^{2} + 2 \, a^{3} d e\right )} x}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x+a)^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)/(c^3*e^2*x^8 + (2*c^3*d*e + 3*b*c^2*e^2)*x^7 + (c^3*d^2 + 6*b*c^2
*d*e + 3*(b^2*c + a*c^2)*e^2)*x^6 + (3*b*c^2*d^2 + 6*(b^2*c + a*c^2)*d*e + (b^3 + 6*a*b*c)*e^2)*x^5 + a^3*d^2
+ (3*(b^2*c + a*c^2)*d^2 + 2*(b^3 + 6*a*b*c)*d*e + 3*(a*b^2 + a^2*c)*e^2)*x^4 + (3*a^2*b*e^2 + (b^3 + 6*a*b*c)
*d^2 + 6*(a*b^2 + a^2*c)*d*e)*x^3 + (6*a^2*b*d*e + a^3*e^2 + 3*(a*b^2 + a^2*c)*d^2)*x^2 + (3*a^2*b*d^2 + 2*a^3
*d*e)*x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (d + e x\right )^{\frac{3}{2}} \left (a + b x + c x^{2}\right )^{\frac{5}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(3/2)/(c*x**2+b*x+a)**(5/2),x)

[Out]

Integral(1/((d + e*x)**(3/2)*(a + b*x + c*x**2)**(5/2)), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x+a)^(5/2),x, algorithm="giac")

[Out]

Timed out