### 3.2475 $$\int \frac{1}{(d+e x)^{5/2} (a+b x+c x^2)^{3/2}} \, dx$$

Optimal. Leaf size=744 $-\frac{4 \sqrt{2} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (-c e (5 a e+3 b d)+2 b^2 e^2+3 c^2 d^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right ),-\frac{2 e \sqrt{b^2-4 a c}}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}\right )}{3 \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{a+b x+c x^2} \left (a e^2-b d e+c d^2\right )^2}-\frac{4 e \sqrt{a+b x+c x^2} \left (-c e (5 a e+3 b d)+2 b^2 e^2+3 c^2 d^2\right )}{3 \left (b^2-4 a c\right ) (d+e x)^{3/2} \left (a e^2-b d e+c d^2\right )^2}-\frac{2 e \sqrt{a+b x+c x^2} (2 c d-b e) \left (-c e (29 a e+3 b d)+8 b^2 e^2+3 c^2 d^2\right )}{3 \left (b^2-4 a c\right ) \sqrt{d+e x} \left (a e^2-b d e+c d^2\right )^3}+\frac{\sqrt{2} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) \left (-c e (29 a e+3 b d)+8 b^2 e^2+3 c^2 d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 \sqrt{b^2-4 a c} \sqrt{a+b x+c x^2} \left (a e^2-b d e+c d^2\right )^3 \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}-\frac{2 \left (2 a c e+b^2 (-e)+c x (2 c d-b e)+b c d\right )}{\left (b^2-4 a c\right ) (d+e x)^{3/2} \sqrt{a+b x+c x^2} \left (a e^2-b d e+c d^2\right )}$

[Out]

(-2*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x))/((b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)*(d + e*x)^(3/2)*Sqrt
[a + b*x + c*x^2]) - (4*e*(3*c^2*d^2 + 2*b^2*e^2 - c*e*(3*b*d + 5*a*e))*Sqrt[a + b*x + c*x^2])/(3*(b^2 - 4*a*c
)*(c*d^2 - b*d*e + a*e^2)^2*(d + e*x)^(3/2)) - (2*e*(2*c*d - b*e)*(3*c^2*d^2 + 8*b^2*e^2 - c*e*(3*b*d + 29*a*e
))*Sqrt[a + b*x + c*x^2])/(3*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)^3*Sqrt[d + e*x]) + (Sqrt[2]*(2*c*d - b*e)*(
3*c^2*d^2 + 8*b^2*e^2 - c*e*(3*b*d + 29*a*e))*Sqrt[d + e*x]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*Ellip
ticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d
- (b + Sqrt[b^2 - 4*a*c])*e)])/(3*Sqrt[b^2 - 4*a*c]*(c*d^2 - b*d*e + a*e^2)^3*Sqrt[(c*(d + e*x))/(2*c*d - (b +
Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) - (4*Sqrt[2]*(3*c^2*d^2 + 2*b^2*e^2 - c*e*(3*b*d + 5*a*e))*Sqrt
[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[Arc
Sin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + S
qrt[b^2 - 4*a*c])*e)])/(3*Sqrt[b^2 - 4*a*c]*(c*d^2 - b*d*e + a*e^2)^2*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.911197, antiderivative size = 744, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 24, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.25, Rules used = {740, 834, 843, 718, 424, 419} $-\frac{4 e \sqrt{a+b x+c x^2} \left (-c e (5 a e+3 b d)+2 b^2 e^2+3 c^2 d^2\right )}{3 \left (b^2-4 a c\right ) (d+e x)^{3/2} \left (a e^2-b d e+c d^2\right )^2}-\frac{2 e \sqrt{a+b x+c x^2} (2 c d-b e) \left (-c e (29 a e+3 b d)+8 b^2 e^2+3 c^2 d^2\right )}{3 \left (b^2-4 a c\right ) \sqrt{d+e x} \left (a e^2-b d e+c d^2\right )^3}-\frac{4 \sqrt{2} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (-c e (5 a e+3 b d)+2 b^2 e^2+3 c^2 d^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{a+b x+c x^2} \left (a e^2-b d e+c d^2\right )^2}+\frac{\sqrt{2} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) \left (-c e (29 a e+3 b d)+8 b^2 e^2+3 c^2 d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 \sqrt{b^2-4 a c} \sqrt{a+b x+c x^2} \left (a e^2-b d e+c d^2\right )^3 \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}-\frac{2 \left (2 a c e+b^2 (-e)+c x (2 c d-b e)+b c d\right )}{\left (b^2-4 a c\right ) (d+e x)^{3/2} \sqrt{a+b x+c x^2} \left (a e^2-b d e+c d^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((d + e*x)^(5/2)*(a + b*x + c*x^2)^(3/2)),x]

[Out]

(-2*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x))/((b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)*(d + e*x)^(3/2)*Sqrt
[a + b*x + c*x^2]) - (4*e*(3*c^2*d^2 + 2*b^2*e^2 - c*e*(3*b*d + 5*a*e))*Sqrt[a + b*x + c*x^2])/(3*(b^2 - 4*a*c
)*(c*d^2 - b*d*e + a*e^2)^2*(d + e*x)^(3/2)) - (2*e*(2*c*d - b*e)*(3*c^2*d^2 + 8*b^2*e^2 - c*e*(3*b*d + 29*a*e
))*Sqrt[a + b*x + c*x^2])/(3*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)^3*Sqrt[d + e*x]) + (Sqrt[2]*(2*c*d - b*e)*(
3*c^2*d^2 + 8*b^2*e^2 - c*e*(3*b*d + 29*a*e))*Sqrt[d + e*x]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*Ellip
ticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d
- (b + Sqrt[b^2 - 4*a*c])*e)])/(3*Sqrt[b^2 - 4*a*c]*(c*d^2 - b*d*e + a*e^2)^3*Sqrt[(c*(d + e*x))/(2*c*d - (b +
Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) - (4*Sqrt[2]*(3*c^2*d^2 + 2*b^2*e^2 - c*e*(3*b*d + 5*a*e))*Sqrt
[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[Arc
Sin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + S
qrt[b^2 - 4*a*c])*e)])/(3*Sqrt[b^2 - 4*a*c]*(c*d^2 - b*d*e + a*e^2)^2*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

Rule 740

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e
+ a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*Simp[b*c*d*e*(2*p - m
+ 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x
, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b
*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 834

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m
+ 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1)
+ b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{1}{(d+e x)^{5/2} \left (a+b x+c x^2\right )^{3/2}} \, dx &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) (d+e x)^{3/2} \sqrt{a+b x+c x^2}}-\frac{2 \int \frac{\frac{1}{2} e \left (3 b c d-4 b^2 e+10 a c e\right )+\frac{3}{2} c e (2 c d-b e) x}{(d+e x)^{5/2} \sqrt{a+b x+c x^2}} \, dx}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )}\\ &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) (d+e x)^{3/2} \sqrt{a+b x+c x^2}}-\frac{4 e \left (3 c^2 d^2+2 b^2 e^2-c e (3 b d+5 a e)\right ) \sqrt{a+b x+c x^2}}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )^2 (d+e x)^{3/2}}+\frac{4 \int \frac{\frac{1}{4} e \left (15 b^2 c d e-48 a c^2 d e-8 b^3 e^2-b c \left (3 c d^2-29 a e^2\right )\right )-\frac{1}{2} c e \left (3 c^2 d^2+2 b^2 e^2-c e (3 b d+5 a e)\right ) x}{(d+e x)^{3/2} \sqrt{a+b x+c x^2}} \, dx}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )^2}\\ &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) (d+e x)^{3/2} \sqrt{a+b x+c x^2}}-\frac{4 e \left (3 c^2 d^2+2 b^2 e^2-c e (3 b d+5 a e)\right ) \sqrt{a+b x+c x^2}}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )^2 (d+e x)^{3/2}}-\frac{2 e (2 c d-b e) \left (3 c^2 d^2+8 b^2 e^2-c e (3 b d+29 a e)\right ) \sqrt{a+b x+c x^2}}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )^3 \sqrt{d+e x}}-\frac{8 \int \frac{\frac{1}{8} c e \left (4 b^3 d e^2+2 a c e \left (27 c d^2-5 a e^2\right )-b c d \left (3 c d^2+25 a e^2\right )-b^2 \left (9 c d^2 e-4 a e^3\right )\right )-\frac{1}{8} c e (2 c d-b e) \left (3 c^2 d^2+8 b^2 e^2-c e (3 b d+29 a e)\right ) x}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )^3}\\ &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) (d+e x)^{3/2} \sqrt{a+b x+c x^2}}-\frac{4 e \left (3 c^2 d^2+2 b^2 e^2-c e (3 b d+5 a e)\right ) \sqrt{a+b x+c x^2}}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )^2 (d+e x)^{3/2}}-\frac{2 e (2 c d-b e) \left (3 c^2 d^2+8 b^2 e^2-c e (3 b d+29 a e)\right ) \sqrt{a+b x+c x^2}}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )^3 \sqrt{d+e x}}-\frac{\left (2 c \left (3 c^2 d^2+2 b^2 e^2-c e (3 b d+5 a e)\right )\right ) \int \frac{1}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )^2}+\frac{\left (c (2 c d-b e) \left (3 c^2 d^2+8 b^2 e^2-c e (3 b d+29 a e)\right )\right ) \int \frac{\sqrt{d+e x}}{\sqrt{a+b x+c x^2}} \, dx}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )^3}\\ &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) (d+e x)^{3/2} \sqrt{a+b x+c x^2}}-\frac{4 e \left (3 c^2 d^2+2 b^2 e^2-c e (3 b d+5 a e)\right ) \sqrt{a+b x+c x^2}}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )^2 (d+e x)^{3/2}}-\frac{2 e (2 c d-b e) \left (3 c^2 d^2+8 b^2 e^2-c e (3 b d+29 a e)\right ) \sqrt{a+b x+c x^2}}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )^3 \sqrt{d+e x}}+\frac{\left (\sqrt{2} (2 c d-b e) \left (3 c^2 d^2+8 b^2 e^2-c e (3 b d+29 a e)\right ) \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{3 \sqrt{b^2-4 a c} \left (c d^2-b d e+a e^2\right )^3 \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{a+b x+c x^2}}-\frac{\left (4 \sqrt{2} \left (3 c^2 d^2+2 b^2 e^2-c e (3 b d+5 a e)\right ) \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{3 \sqrt{b^2-4 a c} \left (c d^2-b d e+a e^2\right )^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) (d+e x)^{3/2} \sqrt{a+b x+c x^2}}-\frac{4 e \left (3 c^2 d^2+2 b^2 e^2-c e (3 b d+5 a e)\right ) \sqrt{a+b x+c x^2}}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )^2 (d+e x)^{3/2}}-\frac{2 e (2 c d-b e) \left (3 c^2 d^2+8 b^2 e^2-c e (3 b d+29 a e)\right ) \sqrt{a+b x+c x^2}}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )^3 \sqrt{d+e x}}+\frac{\sqrt{2} (2 c d-b e) \left (3 c^2 d^2+8 b^2 e^2-c e (3 b d+29 a e)\right ) \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 \sqrt{b^2-4 a c} \left (c d^2-b d e+a e^2\right )^3 \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{a+b x+c x^2}}-\frac{4 \sqrt{2} \left (3 c^2 d^2+2 b^2 e^2-c e (3 b d+5 a e)\right ) \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 \sqrt{b^2-4 a c} \left (c d^2-b d e+a e^2\right )^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 13.3263, size = 5565, normalized size = 7.48 $\text{Result too large to show}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((d + e*x)^(5/2)*(a + b*x + c*x^2)^(3/2)),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [B]  time = 0.436, size = 12895, normalized size = 17.3 \begin{align*} \text{output too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(5/2)/(c*x^2+b*x+a)^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}{\left (e x + d\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(5/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((c*x^2 + b*x + a)^(3/2)*(e*x + d)^(5/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + b x + a} \sqrt{e x + d}}{c^{2} e^{3} x^{7} +{\left (3 \, c^{2} d e^{2} + 2 \, b c e^{3}\right )} x^{6} +{\left (3 \, c^{2} d^{2} e + 6 \, b c d e^{2} +{\left (b^{2} + 2 \, a c\right )} e^{3}\right )} x^{5} + a^{2} d^{3} +{\left (c^{2} d^{3} + 6 \, b c d^{2} e + 2 \, a b e^{3} + 3 \,{\left (b^{2} + 2 \, a c\right )} d e^{2}\right )} x^{4} +{\left (2 \, b c d^{3} + 6 \, a b d e^{2} + a^{2} e^{3} + 3 \,{\left (b^{2} + 2 \, a c\right )} d^{2} e\right )} x^{3} +{\left (6 \, a b d^{2} e + 3 \, a^{2} d e^{2} +{\left (b^{2} + 2 \, a c\right )} d^{3}\right )} x^{2} +{\left (2 \, a b d^{3} + 3 \, a^{2} d^{2} e\right )} x}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(5/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)/(c^2*e^3*x^7 + (3*c^2*d*e^2 + 2*b*c*e^3)*x^6 + (3*c^2*d^2*e + 6*b
*c*d*e^2 + (b^2 + 2*a*c)*e^3)*x^5 + a^2*d^3 + (c^2*d^3 + 6*b*c*d^2*e + 2*a*b*e^3 + 3*(b^2 + 2*a*c)*d*e^2)*x^4
+ (2*b*c*d^3 + 6*a*b*d*e^2 + a^2*e^3 + 3*(b^2 + 2*a*c)*d^2*e)*x^3 + (6*a*b*d^2*e + 3*a^2*d*e^2 + (b^2 + 2*a*c)
*d^3)*x^2 + (2*a*b*d^3 + 3*a^2*d^2*e)*x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (d + e x\right )^{\frac{5}{2}} \left (a + b x + c x^{2}\right )^{\frac{3}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(5/2)/(c*x**2+b*x+a)**(3/2),x)

[Out]

Integral(1/((d + e*x)**(5/2)*(a + b*x + c*x**2)**(3/2)), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(5/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="giac")

[Out]

Timed out