### 3.2473 $$\int \frac{1}{\sqrt{d+e x} (a+b x+c x^2)^{3/2}} \, dx$$

Optimal. Leaf size=480 $-\frac{4 \sqrt{2} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right ),-\frac{2 e \sqrt{b^2-4 a c}}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}\right )}{\sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{a+b x+c x^2}}-\frac{2 \sqrt{d+e x} \left (2 a c e+b^2 (-e)+c x (2 c d-b e)+b c d\right )}{\left (b^2-4 a c\right ) \sqrt{a+b x+c x^2} \left (a e^2-b d e+c d^2\right )}+\frac{\sqrt{2} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{\sqrt{b^2-4 a c} \sqrt{a+b x+c x^2} \left (a e^2-b d e+c d^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}$

[Out]

(-2*Sqrt[d + e*x]*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x))/((b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)*Sqrt[a
+ b*x + c*x^2]) + (Sqrt[2]*(2*c*d - b*e)*Sqrt[d + e*x]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE
[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b
+ Sqrt[b^2 - 4*a*c])*e)])/(Sqrt[b^2 - 4*a*c]*(c*d^2 - b*d*e + a*e^2)*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^
2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) - (4*Sqrt[2]*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sq
rt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*
a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(Sqrt[b^2 - 4*a*c]*Sqrt[d + e*x
]*Sqrt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.320468, antiderivative size = 480, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 24, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.208, Rules used = {740, 843, 718, 424, 419} $-\frac{2 \sqrt{d+e x} \left (2 a c e+b^2 (-e)+c x (2 c d-b e)+b c d\right )}{\left (b^2-4 a c\right ) \sqrt{a+b x+c x^2} \left (a e^2-b d e+c d^2\right )}+\frac{\sqrt{2} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{\sqrt{b^2-4 a c} \sqrt{a+b x+c x^2} \left (a e^2-b d e+c d^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}-\frac{4 \sqrt{2} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{\sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{a+b x+c x^2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/(Sqrt[d + e*x]*(a + b*x + c*x^2)^(3/2)),x]

[Out]

(-2*Sqrt[d + e*x]*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x))/((b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)*Sqrt[a
+ b*x + c*x^2]) + (Sqrt[2]*(2*c*d - b*e)*Sqrt[d + e*x]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE
[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b
+ Sqrt[b^2 - 4*a*c])*e)])/(Sqrt[b^2 - 4*a*c]*(c*d^2 - b*d*e + a*e^2)*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^
2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) - (4*Sqrt[2]*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sq
rt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*
a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(Sqrt[b^2 - 4*a*c]*Sqrt[d + e*x
]*Sqrt[a + b*x + c*x^2])

Rule 740

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e
+ a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*Simp[b*c*d*e*(2*p - m
+ 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x
, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b
*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{d+e x} \left (a+b x+c x^2\right )^{3/2}} \, dx &=-\frac{2 \sqrt{d+e x} \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt{a+b x+c x^2}}-\frac{2 \int \frac{-\frac{1}{2} c e (b d-2 a e)-\frac{1}{2} c e (2 c d-b e) x}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )}\\ &=-\frac{2 \sqrt{d+e x} \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt{a+b x+c x^2}}-\frac{(2 c) \int \frac{1}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{b^2-4 a c}+\frac{(c (2 c d-b e)) \int \frac{\sqrt{d+e x}}{\sqrt{a+b x+c x^2}} \, dx}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )}\\ &=-\frac{2 \sqrt{d+e x} \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt{a+b x+c x^2}}+\frac{\left (\sqrt{2} (2 c d-b e) \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{\sqrt{b^2-4 a c} \left (c d^2-b d e+a e^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{a+b x+c x^2}}-\frac{\left (4 \sqrt{2} \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{\sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ &=-\frac{2 \sqrt{d+e x} \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt{a+b x+c x^2}}+\frac{\sqrt{2} (2 c d-b e) \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{\sqrt{b^2-4 a c} \left (c d^2-b d e+a e^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{a+b x+c x^2}}-\frac{4 \sqrt{2} \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{\sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 8.92943, size = 976, normalized size = 2.03 $\frac{\sqrt{d+e x} \left (-4 e b^2+4 c (d-e x) b+8 c (a e+c d x)-\frac{(d+e x) \left (-\frac{4 (b e-2 c d) \sqrt{\frac{c d^2+e (a e-b d)}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}} (a+x (b+c x)) e^2}{(d+e x)^2}-\frac{i \sqrt{2} (2 c d-b e) \left (2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) \sqrt{\frac{-2 a e^2+2 c d x e+\sqrt{\left (b^2-4 a c\right ) e^2} x e+b (d-e x) e+d \sqrt{\left (b^2-4 a c\right ) e^2}}{\left (2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \sqrt{\frac{2 a e^2-2 c d x e+\sqrt{\left (b^2-4 a c\right ) e^2} x e+b (e x-d) e+d \sqrt{\left (b^2-4 a c\right ) e^2}}{\left (-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{2} \sqrt{\frac{c d^2-b e d+a e^2}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}{\sqrt{d+e x}}\right )|-\frac{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}}\right )}{\sqrt{d+e x}}+\frac{i \sqrt{2} \left (b^2 e^2-4 a c e^2-b \sqrt{\left (b^2-4 a c\right ) e^2} e+2 c d \sqrt{\left (b^2-4 a c\right ) e^2}\right ) \sqrt{\frac{-2 a e^2+2 c d x e+\sqrt{\left (b^2-4 a c\right ) e^2} x e+b (d-e x) e+d \sqrt{\left (b^2-4 a c\right ) e^2}}{\left (2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \sqrt{\frac{2 a e^2-2 c d x e+\sqrt{\left (b^2-4 a c\right ) e^2} x e+b (e x-d) e+d \sqrt{\left (b^2-4 a c\right ) e^2}}{\left (-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{2} \sqrt{\frac{c d^2-b e d+a e^2}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}{\sqrt{d+e x}}\right ),-\frac{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}}\right )}{\sqrt{d+e x}}\right )}{e \sqrt{\frac{c d^2+e (a e-b d)}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}\right )}{2 \left (b^2-4 a c\right ) \left (e (b d-a e)-c d^2\right ) \sqrt{a+x (b+c x)}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/(Sqrt[d + e*x]*(a + b*x + c*x^2)^(3/2)),x]

[Out]

(Sqrt[d + e*x]*(-4*b^2*e + 8*c*(a*e + c*d*x) + 4*b*c*(d - e*x) - ((d + e*x)*((-4*e^2*(-2*c*d + b*e)*Sqrt[(c*d^
2 + e*(-(b*d) + a*e))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])]*(a + x*(b + c*x)))/(d + e*x)^2 - (I*Sqrt[2]*(2
*c*d - b*e)*(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])*Sqrt[(-2*a*e^2 + d*Sqrt[(b^2 - 4*a*c)*e^2] + 2*c*d*e*x + e
*Sqrt[(b^2 - 4*a*c)*e^2]*x + b*e*(d - e*x))/((2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Sqrt[(2*a*e^2
+ d*Sqrt[(b^2 - 4*a*c)*e^2] - 2*c*d*e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]*x + b*e*(-d + e*x))/((-2*c*d + b*e + Sqrt
[(b^2 - 4*a*c)*e^2])*(d + e*x))]*EllipticE[I*ArcSinh[(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqr
t[(b^2 - 4*a*c)*e^2])])/Sqrt[d + e*x]], -((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 -
4*a*c)*e^2]))])/Sqrt[d + e*x] + (I*Sqrt[2]*(b^2*e^2 - 4*a*c*e^2 + 2*c*d*Sqrt[(b^2 - 4*a*c)*e^2] - b*e*Sqrt[(b^
2 - 4*a*c)*e^2])*Sqrt[(-2*a*e^2 + d*Sqrt[(b^2 - 4*a*c)*e^2] + 2*c*d*e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]*x + b*e*(d
- e*x))/((2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Sqrt[(2*a*e^2 + d*Sqrt[(b^2 - 4*a*c)*e^2] - 2*c*
d*e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]*x + b*e*(-d + e*x))/((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*El
lipticF[I*ArcSinh[(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt[d + e*
x]], -((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))])/Sqrt[d + e*x]))/(e*
Sqrt[(c*d^2 + e*(-(b*d) + a*e))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])))/(2*(b^2 - 4*a*c)*(-(c*d^2) + e*(b
*d - a*e))*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

Maple [B]  time = 0.369, size = 1894, normalized size = 4. \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(3/2),x)

[Out]

-2*(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*
(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2
^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4
*a*c+b^2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/2)*a*e^3-2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*
(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-
4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*
(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/2)*b*d*e^2+2^(1/2)*(-(e
*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/
2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)
*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2))
)^(1/2))*(-4*a*c+b^2)^(1/2)*c*d^2*e+2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(
-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/
2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(
1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*b*e^3-2*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b
*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+
b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*
c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*c*d*e^2-2^(1/2)*(-(e
*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/
2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)
*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2))
)^(1/2))*b^2*d*e^2+3*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/
2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^
(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)
/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b*c*d^2*e-2*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1
/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(
e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(
-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*c^2*d^3+x^2*b*c*e^3-2*x^2*c^2*d*e^2
-2*x*a*c*e^3+x*b^2*e^3-2*x*c^2*d^2*e-2*a*d*e^2*c+b^2*d*e^2-b*c*d^2*e)*(c*x^2+b*x+a)^(1/2)*(e*x+d)^(1/2)/e/(4*a
*c-b^2)/(a*e^2-b*d*e+c*d^2)/(c*e*x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}} \sqrt{e x + d}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((c*x^2 + b*x + a)^(3/2)*sqrt(e*x + d)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + b x + a} \sqrt{e x + d}}{c^{2} e x^{5} +{\left (c^{2} d + 2 \, b c e\right )} x^{4} +{\left (2 \, b c d +{\left (b^{2} + 2 \, a c\right )} e\right )} x^{3} + a^{2} d +{\left (2 \, a b e +{\left (b^{2} + 2 \, a c\right )} d\right )} x^{2} +{\left (2 \, a b d + a^{2} e\right )} x}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)/(c^2*e*x^5 + (c^2*d + 2*b*c*e)*x^4 + (2*b*c*d + (b^2 + 2*a*c)*e)*
x^3 + a^2*d + (2*a*b*e + (b^2 + 2*a*c)*d)*x^2 + (2*a*b*d + a^2*e)*x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{d + e x} \left (a + b x + c x^{2}\right )^{\frac{3}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(1/2)/(c*x**2+b*x+a)**(3/2),x)

[Out]

Integral(1/(sqrt(d + e*x)*(a + b*x + c*x**2)**(3/2)), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="giac")

[Out]

Timed out