### 3.2472 $$\int \frac{\sqrt{d+e x}}{(a+b x+c x^2)^{3/2}} \, dx$$

Optimal. Leaf size=426 $-\frac{2 \sqrt{2} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right ),-\frac{2 e \sqrt{b^2-4 a c}}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}\right )}{c \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{a+b x+c x^2}}-\frac{2 (b+2 c x) \sqrt{d+e x}}{\left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}}+\frac{2 \sqrt{2} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{\sqrt{b^2-4 a c} \sqrt{a+b x+c x^2} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}$

[Out]

(-2*(b + 2*c*x)*Sqrt[d + e*x])/((b^2 - 4*a*c)*Sqrt[a + b*x + c*x^2]) + (2*Sqrt[2]*Sqrt[d + e*x]*Sqrt[-((c*(a +
b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2
]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(Sqrt[b^2 - 4*a*c]*Sqrt[(c*(d + e*x))/(2*c*
d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) - (2*Sqrt[2]*(2*c*d - b*e)*Sqrt[(c*(d + e*x))/(2*c*d -
(b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 -
4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(
c*Sqrt[b^2 - 4*a*c]*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.249196, antiderivative size = 426, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 24, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.208, Rules used = {736, 843, 718, 424, 419} $-\frac{2 (b+2 c x) \sqrt{d+e x}}{\left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}}-\frac{2 \sqrt{2} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{c \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{a+b x+c x^2}}+\frac{2 \sqrt{2} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{\sqrt{b^2-4 a c} \sqrt{a+b x+c x^2} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sqrt[d + e*x]/(a + b*x + c*x^2)^(3/2),x]

[Out]

(-2*(b + 2*c*x)*Sqrt[d + e*x])/((b^2 - 4*a*c)*Sqrt[a + b*x + c*x^2]) + (2*Sqrt[2]*Sqrt[d + e*x]*Sqrt[-((c*(a +
b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2
]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(Sqrt[b^2 - 4*a*c]*Sqrt[(c*(d + e*x))/(2*c*
d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) - (2*Sqrt[2]*(2*c*d - b*e)*Sqrt[(c*(d + e*x))/(2*c*d -
(b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 -
4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(
c*Sqrt[b^2 - 4*a*c]*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

Rule 736

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^m*(b + 2*
c*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] - Dist[1/((p + 1)*(b^2 - 4*a*c)), Int[(d + e*x)^(m
- 1)*(b*e*m + 2*c*d*(2*p + 3) + 2*c*e*(m + 2*p + 3)*x)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d
, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && GtQ[m
, 0] && (LtQ[m, 1] || (ILtQ[m + 2*p + 3, 0] && NeQ[m, 2])) && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\sqrt{d+e x}}{\left (a+b x+c x^2\right )^{3/2}} \, dx &=-\frac{2 (b+2 c x) \sqrt{d+e x}}{\left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}}+\frac{2 \int \frac{\frac{b e}{2}+c e x}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{b^2-4 a c}\\ &=-\frac{2 (b+2 c x) \sqrt{d+e x}}{\left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}}+\frac{(2 c) \int \frac{\sqrt{d+e x}}{\sqrt{a+b x+c x^2}} \, dx}{b^2-4 a c}-\frac{(2 c d-b e) \int \frac{1}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{b^2-4 a c}\\ &=-\frac{2 (b+2 c x) \sqrt{d+e x}}{\left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}}+\frac{\left (2 \sqrt{2} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{\sqrt{b^2-4 a c} \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{a+b x+c x^2}}-\frac{\left (2 \sqrt{2} (2 c d-b e) \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{c \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ &=-\frac{2 (b+2 c x) \sqrt{d+e x}}{\left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}}+\frac{2 \sqrt{2} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{\sqrt{b^2-4 a c} \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{a+b x+c x^2}}-\frac{2 \sqrt{2} (2 c d-b e) \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{c \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 8.54278, size = 996, normalized size = 2.34 $\frac{(d+e x)^{3/2} \left (c x^2+b x+a\right )^{3/2} \left (-4 \sqrt{\frac{c d^2+e (a e-b d)}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}} \left (c \left (\frac{d}{d+e x}-1\right )^2+\frac{e \left (-\frac{d b}{d+e x}+b+\frac{a e}{d+e x}\right )}{d+e x}\right )+\frac{i \sqrt{2} \left (2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) \sqrt{\frac{-\frac{2 a e^2}{d+e x}+b \left (\frac{2 d}{d+e x}-1\right ) e-2 c d \left (\frac{d}{d+e x}-1\right )+\sqrt{\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}}} \sqrt{\frac{\frac{2 a e^2}{d+e x}+2 c d \left (\frac{d}{d+e x}-1\right )+b \left (e-\frac{2 d e}{d+e x}\right )+\sqrt{\left (b^2-4 a c\right ) e^2}}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{2} \sqrt{\frac{c d^2-b e d+a e^2}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}{\sqrt{d+e x}}\right )|-\frac{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}}\right )}{\sqrt{d+e x}}-\frac{i \sqrt{2} \sqrt{\left (b^2-4 a c\right ) e^2} \sqrt{\frac{-\frac{2 a e^2}{d+e x}+b \left (\frac{2 d}{d+e x}-1\right ) e-2 c d \left (\frac{d}{d+e x}-1\right )+\sqrt{\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}}} \sqrt{\frac{\frac{2 a e^2}{d+e x}+2 c d \left (\frac{d}{d+e x}-1\right )+b \left (e-\frac{2 d e}{d+e x}\right )+\sqrt{\left (b^2-4 a c\right ) e^2}}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{2} \sqrt{\frac{c d^2-b e d+a e^2}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}{\sqrt{d+e x}}\right ),-\frac{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}}\right )}{\sqrt{d+e x}}\right )}{\left (4 a c-b^2\right ) e \sqrt{\frac{c d^2+e (a e-b d)}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}} (a+x (b+c x))^{3/2} \sqrt{\frac{(d+e x)^2 \left (c \left (\frac{d}{d+e x}-1\right )^2+\frac{e \left (-\frac{d b}{d+e x}+b+\frac{a e}{d+e x}\right )}{d+e x}\right )}{e^2}}}-\frac{2 (b+2 c x) \sqrt{d+e x} \left (c x^2+b x+a\right )}{\left (b^2-4 a c\right ) (a+x (b+c x))^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Sqrt[d + e*x]/(a + b*x + c*x^2)^(3/2),x]

[Out]

(-2*(b + 2*c*x)*Sqrt[d + e*x]*(a + b*x + c*x^2))/((b^2 - 4*a*c)*(a + x*(b + c*x))^(3/2)) + ((d + e*x)^(3/2)*(a
+ b*x + c*x^2)^(3/2)*(-4*Sqrt[(c*d^2 + e*(-(b*d) + a*e))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])]*(c*(-1 + d
/(d + e*x))^2 + (e*(b - (b*d)/(d + e*x) + (a*e)/(d + e*x)))/(d + e*x)) + (I*Sqrt[2]*(2*c*d - b*e + Sqrt[(b^2 -
4*a*c)*e^2])*Sqrt[(Sqrt[(b^2 - 4*a*c)*e^2] - (2*a*e^2)/(d + e*x) - 2*c*d*(-1 + d/(d + e*x)) + b*e*(-1 + (2*d)
/(d + e*x)))/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])]*Sqrt[(Sqrt[(b^2 - 4*a*c)*e^2] + (2*a*e^2)/(d + e*x) + 2*
c*d*(-1 + d/(d + e*x)) + b*(e - (2*d*e)/(d + e*x)))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])]*EllipticE[I*ArcS
inh[(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt[d + e*x]], -((-2*c*d
+ b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))])/Sqrt[d + e*x] - (I*Sqrt[2]*Sqrt[(
b^2 - 4*a*c)*e^2]*Sqrt[(Sqrt[(b^2 - 4*a*c)*e^2] - (2*a*e^2)/(d + e*x) - 2*c*d*(-1 + d/(d + e*x)) + b*e*(-1 + (
2*d)/(d + e*x)))/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])]*Sqrt[(Sqrt[(b^2 - 4*a*c)*e^2] + (2*a*e^2)/(d + e*x)
+ 2*c*d*(-1 + d/(d + e*x)) + b*(e - (2*d*e)/(d + e*x)))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])]*EllipticF[I*
ArcSinh[(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt[d + e*x]], -((-2
*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))])/Sqrt[d + e*x]))/((-b^2 + 4*a*
c)*e*Sqrt[(c*d^2 + e*(-(b*d) + a*e))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])]*(a + x*(b + c*x))^(3/2)*Sqrt[((
d + e*x)^2*(c*(-1 + d/(d + e*x))^2 + (e*(b - (b*d)/(d + e*x) + (a*e)/(d + e*x)))/(d + e*x)))/e^2])

________________________________________________________________________________________

Maple [B]  time = 0.36, size = 1612, normalized size = 3.8 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(1/2)/(c*x^2+b*x+a)^(3/2),x)

[Out]

(-4*2^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-
2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*c*e^2*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e
*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*
a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)+2^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)
,(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b^2*e^2*(-(e*x+d)*c/(e*(-4*a*c+b^
2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*
x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)+2^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c
+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b*e^
2*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^
2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(-4*a*c+b^2)^(1/2)-2*
2^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*
d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*c*d*e*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2
*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^
2)^(1/2)+b*e-2*c*d))^(1/2)*(-4*a*c+b^2)^(1/2)+4*2^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*
e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*c*e^2*(-(e*x+d)*
c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(
1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)-4*2^(1/2)*EllipticE(2^(1/2)*(-(e*
x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1
/2)))^(1/2))*b*c*d*e*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c
*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)+4*
2^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*
d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*c^2*d^2*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b
-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+
b^2)^(1/2)+b*e-2*c*d))^(1/2)+4*c^2*e^2*x^2+2*b*c*e^2*x+4*x*c^2*d*e+2*b*c*d*e)*(e*x+d)^(1/2)*(c*x^2+b*x+a)^(1/2
)/c/e/(c*e*x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)/(4*a*c-b^2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e x + d}}{{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x + d)/(c*x^2 + b*x + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + b x + a} \sqrt{e x + d}}{c^{2} x^{4} + 2 \, b c x^{3} + 2 \, a b x +{\left (b^{2} + 2 \, a c\right )} x^{2} + a^{2}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)/(c^2*x^4 + 2*b*c*x^3 + 2*a*b*x + (b^2 + 2*a*c)*x^2 + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d + e x}}{\left (a + b x + c x^{2}\right )^{\frac{3}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(1/2)/(c*x**2+b*x+a)**(3/2),x)

[Out]

Integral(sqrt(d + e*x)/(a + b*x + c*x**2)**(3/2), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="giac")

[Out]

Timed out