### 3.2462 $$\int \frac{(d+e x)^{5/2}}{\sqrt{a+b x+c x^2}} \, dx$$

Optimal. Leaf size=509 $-\frac{8 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) \left (a e^2-b d e+c d^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right ),-\frac{2 e \sqrt{b^2-4 a c}}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}\right )}{15 c^3 \sqrt{d+e x} \sqrt{a+b x+c x^2}}+\frac{\sqrt{2} \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (-c e (9 a e+23 b d)+8 b^2 e^2+23 c^2 d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{15 c^3 \sqrt{a+b x+c x^2} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}+\frac{8 e \sqrt{d+e x} \sqrt{a+b x+c x^2} (2 c d-b e)}{15 c^2}+\frac{2 e (d+e x)^{3/2} \sqrt{a+b x+c x^2}}{5 c}$

[Out]

(8*e*(2*c*d - b*e)*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])/(15*c^2) + (2*e*(d + e*x)^(3/2)*Sqrt[a + b*x + c*x^2])
/(5*c) + (Sqrt[2]*Sqrt[b^2 - 4*a*c]*(23*c^2*d^2 + 8*b^2*e^2 - c*e*(23*b*d + 9*a*e))*Sqrt[d + e*x]*Sqrt[-((c*(a
+ b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt
[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(15*c^3*Sqrt[(c*(d + e*x))/(2*c*d - (b +
Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) - (8*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(2*c*d - b*e)*(c*d^2 - b*d*e + a*
e^2)*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*Elli
pticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d
- (b + Sqrt[b^2 - 4*a*c])*e)])/(15*c^3*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.541135, antiderivative size = 509, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 24, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.25, Rules used = {742, 832, 843, 718, 424, 419} $-\frac{8 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) \left (a e^2-b d e+c d^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{15 c^3 \sqrt{d+e x} \sqrt{a+b x+c x^2}}+\frac{\sqrt{2} \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (-c e (9 a e+23 b d)+8 b^2 e^2+23 c^2 d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{15 c^3 \sqrt{a+b x+c x^2} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}+\frac{8 e \sqrt{d+e x} \sqrt{a+b x+c x^2} (2 c d-b e)}{15 c^2}+\frac{2 e (d+e x)^{3/2} \sqrt{a+b x+c x^2}}{5 c}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^(5/2)/Sqrt[a + b*x + c*x^2],x]

[Out]

(8*e*(2*c*d - b*e)*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])/(15*c^2) + (2*e*(d + e*x)^(3/2)*Sqrt[a + b*x + c*x^2])
/(5*c) + (Sqrt[2]*Sqrt[b^2 - 4*a*c]*(23*c^2*d^2 + 8*b^2*e^2 - c*e*(23*b*d + 9*a*e))*Sqrt[d + e*x]*Sqrt[-((c*(a
+ b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt
[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(15*c^3*Sqrt[(c*(d + e*x))/(2*c*d - (b +
Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) - (8*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(2*c*d - b*e)*(c*d^2 - b*d*e + a*
e^2)*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*Elli
pticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d
- (b + Sqrt[b^2 - 4*a*c])*e)])/(15*c^3*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

Rule 742

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 1)), x] + Dist[1/(c*(m + 2*p + 1)), Int[(d + e*x)^(m - 2)*Simp[c*d^2
*(m + 2*p + 1) - e*(a*e*(m - 1) + b*d*(p + 1)) + e*(2*c*d - b*e)*(m + p)*x, x]*(a + b*x + c*x^2)^p, x], x] /;
FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0]
&& If[RationalQ[m], GtQ[m, 1], SumSimplerQ[m, -2]] && NeQ[m + 2*p + 1, 0] && IntQuadraticQ[a, b, c, d, e, m,
p, x]

Rule 832

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m
- 1)*(a + b*x + c*x^2)^p*Simp[m*(c*d*f - a*e*g) + d*(2*c*f - b*g)*(p + 1) + (m*(c*e*f + c*d*g - b*e*g) + e*(p
+ 1)*(2*c*f - b*g))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 -
b*d*e + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
&&  !(IGtQ[m, 0] && EqQ[f, 0])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{(d+e x)^{5/2}}{\sqrt{a+b x+c x^2}} \, dx &=\frac{2 e (d+e x)^{3/2} \sqrt{a+b x+c x^2}}{5 c}+\frac{2 \int \frac{\sqrt{d+e x} \left (\frac{1}{2} \left (5 c d^2-e (b d+3 a e)\right )+2 e (2 c d-b e) x\right )}{\sqrt{a+b x+c x^2}} \, dx}{5 c}\\ &=\frac{8 e (2 c d-b e) \sqrt{d+e x} \sqrt{a+b x+c x^2}}{15 c^2}+\frac{2 e (d+e x)^{3/2} \sqrt{a+b x+c x^2}}{5 c}+\frac{4 \int \frac{\frac{1}{4} \left (15 c^2 d^3+4 b e^2 (b d+a e)-c d e (11 b d+17 a e)\right )+\frac{1}{4} e \left (23 c^2 d^2+8 b^2 e^2-c e (23 b d+9 a e)\right ) x}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{15 c^2}\\ &=\frac{8 e (2 c d-b e) \sqrt{d+e x} \sqrt{a+b x+c x^2}}{15 c^2}+\frac{2 e (d+e x)^{3/2} \sqrt{a+b x+c x^2}}{5 c}-\frac{\left (4 (2 c d-b e) \left (c d^2-b d e+a e^2\right )\right ) \int \frac{1}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{15 c^2}+\frac{\left (23 c^2 d^2+8 b^2 e^2-c e (23 b d+9 a e)\right ) \int \frac{\sqrt{d+e x}}{\sqrt{a+b x+c x^2}} \, dx}{15 c^2}\\ &=\frac{8 e (2 c d-b e) \sqrt{d+e x} \sqrt{a+b x+c x^2}}{15 c^2}+\frac{2 e (d+e x)^{3/2} \sqrt{a+b x+c x^2}}{5 c}+\frac{\left (\sqrt{2} \sqrt{b^2-4 a c} \left (23 c^2 d^2+8 b^2 e^2-c e (23 b d+9 a e)\right ) \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{15 c^3 \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{a+b x+c x^2}}-\frac{\left (8 \sqrt{2} \sqrt{b^2-4 a c} (2 c d-b e) \left (c d^2-b d e+a e^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{15 c^3 \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ &=\frac{8 e (2 c d-b e) \sqrt{d+e x} \sqrt{a+b x+c x^2}}{15 c^2}+\frac{2 e (d+e x)^{3/2} \sqrt{a+b x+c x^2}}{5 c}+\frac{\sqrt{2} \sqrt{b^2-4 a c} \left (23 c^2 d^2+8 b^2 e^2-c e (23 b d+9 a e)\right ) \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{15 c^3 \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{a+b x+c x^2}}-\frac{8 \sqrt{2} \sqrt{b^2-4 a c} (2 c d-b e) \left (c d^2-b d e+a e^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{15 c^3 \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 9.08862, size = 868, normalized size = 1.71 $\frac{2 \sqrt{c x^2+b x+a} \left (\left (23 c^2 d^2+8 b^2 e^2-c e (23 b d+9 a e)\right ) \left (c \left (\frac{d}{d+e x}-1\right )^2+\frac{e \left (-\frac{d b}{d+e x}+b+\frac{a e}{d+e x}\right )}{d+e x}\right )-\frac{i \sqrt{1-\frac{2 \left (c d^2+e (a e-b d)\right )}{\left (2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \sqrt{\frac{2 \left (c d^2+e (a e-b d)\right )}{\left (-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}+1} \left (\left (2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) \left (23 c^2 d^2+8 b^2 e^2-c e (23 b d+9 a e)\right ) E\left (i \sinh ^{-1}\left (\frac{\sqrt{2} \sqrt{\frac{c d^2-b e d+a e^2}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}{\sqrt{d+e x}}\right )|-\frac{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}}\right )+\left (-30 c^3 d^3-c^2 \left (-34 a e^2-45 b d e+23 d \sqrt{\left (b^2-4 a c\right ) e^2}\right ) d+8 b^2 e^2 \left (b e-\sqrt{\left (b^2-4 a c\right ) e^2}\right )+c e \left (-31 d e b^2-17 a e^2 b+23 d \sqrt{\left (b^2-4 a c\right ) e^2} b+9 a e \sqrt{\left (b^2-4 a c\right ) e^2}\right )\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{2} \sqrt{\frac{c d^2-b e d+a e^2}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}{\sqrt{d+e x}}\right ),-\frac{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}}\right )\right )}{2 \sqrt{2} \sqrt{\frac{c d^2+e (a e-b d)}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}} \sqrt{d+e x}}\right ) (d+e x)^{3/2}}{15 c^3 e \sqrt{a+x (b+c x)} \sqrt{\frac{(d+e x)^2 \left (c \left (\frac{d}{d+e x}-1\right )^2+\frac{e \left (-\frac{d b}{d+e x}+b+\frac{a e}{d+e x}\right )}{d+e x}\right )}{e^2}}}+\frac{\left (\frac{2 e^2 x}{5 c}-\frac{2 e (4 b e-11 c d)}{15 c^2}\right ) \left (c x^2+b x+a\right ) \sqrt{d+e x}}{\sqrt{a+x (b+c x)}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^(5/2)/Sqrt[a + b*x + c*x^2],x]

[Out]

(Sqrt[d + e*x]*((-2*e*(-11*c*d + 4*b*e))/(15*c^2) + (2*e^2*x)/(5*c))*(a + b*x + c*x^2))/Sqrt[a + x*(b + c*x)]
+ (2*(d + e*x)^(3/2)*Sqrt[a + b*x + c*x^2]*((23*c^2*d^2 + 8*b^2*e^2 - c*e*(23*b*d + 9*a*e))*(c*(-1 + d/(d + e*
x))^2 + (e*(b - (b*d)/(d + e*x) + (a*e)/(d + e*x)))/(d + e*x)) - ((I/2)*Sqrt[1 - (2*(c*d^2 + e*(-(b*d) + a*e))
)/((2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Sqrt[1 + (2*(c*d^2 + e*(-(b*d) + a*e)))/((-2*c*d + b*e
+ Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*((2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(23*c^2*d^2 + 8*b^2*e^2 - c*e*
(23*b*d + 9*a*e))*EllipticE[I*ArcSinh[(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)
*e^2])])/Sqrt[d + e*x]], -((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))]
+ (-30*c^3*d^3 + 8*b^2*e^2*(b*e - Sqrt[(b^2 - 4*a*c)*e^2]) - c^2*d*(-45*b*d*e - 34*a*e^2 + 23*d*Sqrt[(b^2 - 4*
a*c)*e^2]) + c*e*(-31*b^2*d*e - 17*a*b*e^2 + 23*b*d*Sqrt[(b^2 - 4*a*c)*e^2] + 9*a*e*Sqrt[(b^2 - 4*a*c)*e^2]))*
EllipticF[I*ArcSinh[(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt[d +
e*x]], -((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))]))/(Sqrt[2]*Sqrt[(c
*d^2 + e*(-(b*d) + a*e))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])]*Sqrt[d + e*x])))/(15*c^3*e*Sqrt[a + x*(b +
c*x)]*Sqrt[((d + e*x)^2*(c*(-1 + d/(d + e*x))^2 + (e*(b - (b*d)/(d + e*x) + (a*e)/(d + e*x)))/(d + e*x)))/e^2]
)

________________________________________________________________________________________

Maple [B]  time = 0.33, size = 4786, normalized size = 9.4 \begin{align*} \text{output too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(5/2)/(c*x^2+b*x+a)^(1/2),x)

[Out]

-2/15*(e*x+d)^(1/2)*(c*x^2+b*x+a)^(1/2)/c^3*(6*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*
(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a
*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4
*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b^3*d*e^3+9*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c
+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2
*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)
^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a^2*c*e^4
+23*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*
(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2
^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4
*a*c+b^2)^(1/2)))^(1/2))*c^3*d^4+4*a*b*c*d*e^3-11*x*b*c^2*d^2*e^2+8*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+
b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c
+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2
*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*b^2*e^4-8*2^(1/2)*(
-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^
(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x
+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/
2)))^(1/2))*b^3*d*e^3-6*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^
(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d
))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c
*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*b^2*e^4-4*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))
^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2)
)/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2
),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/2)*a*c*d*e^3+6*2
^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a
*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2
)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+
b^2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/2)*b*c*d^2*e^2+6*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/
2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e
*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-
(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*b*c*d*e^3-14*2^(1/2)*(-(e*x+d)*c/(
e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2
)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4
*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*
a*b*c*d*e^3-3*x^4*c^3*e^4-10*x^2*b*c^2*d*e^3-9*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*
(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a
*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4
*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a^2*c*e^4-15*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*
c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+
2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2
)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*c^3*d^4-
6*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-
4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(
1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a
*c+b^2)^(1/2)))^(1/2))*a*c^2*d^2*e^2+14*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c
*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)
^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^
2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*c^2*d^2*e^2+31*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b
^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c
*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(
1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b^2*c*d^2*e
^2-21*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+
e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF
(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(
-4*a*c+b^2)^(1/2)))^(1/2))*b^2*c*d^2*e^2-2*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-
2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b
^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c
+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/2)*b^2*d*e^3-4*2^(1/2)*(-(e*x+
d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2))
)^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/
(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(
1/2))*(-4*a*c+b^2)^(1/2)*c^2*d^3*e-46*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x
+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(
1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)
^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b*c^2*d^3*e+2*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(
1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-
4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+
b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/
2)*a*b*e^4+x^3*b*c^2*e^4-14*x^3*c^3*d*e^3-3*x^2*a*c^2*e^4+4*x^2*b^2*c*e^4-11*x^2*c^3*d^2*e^2+30*2^(1/2)*(-(e*x
+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)
))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c
/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^
(1/2))*b*c^2*d^3*e+4*x*a*b*c*e^4-14*x*a*c^2*d*e^3+4*x*b^2*c*d*e^3-11*a*c^2*d^2*e^2)/e/(c*e*x^3+b*e*x^2+c*d*x^2
+a*e*x+b*d*x+a*d)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{5}{2}}}{\sqrt{c x^{2} + b x + a}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(5/2)/sqrt(c*x^2 + b*x + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (e^{2} x^{2} + 2 \, d e x + d^{2}\right )} \sqrt{e x + d}}{\sqrt{c x^{2} + b x + a}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

integral((e^2*x^2 + 2*d*e*x + d^2)*sqrt(e*x + d)/sqrt(c*x^2 + b*x + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d + e x\right )^{\frac{5}{2}}}{\sqrt{a + b x + c x^{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(5/2)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral((d + e*x)**(5/2)/sqrt(a + b*x + c*x**2), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

Timed out