### 3.2456 $$\int \frac{(a+b x+c x^2)^{5/2}}{(d+e x)^{3/2}} \, dx$$

Optimal. Leaf size=716 $-\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) \left (a e^2-b d e+c d^2\right ) \left (-4 c e (32 b d-33 a e)-b^2 e^2+128 c^2 d^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right ),-\frac{2 e \sqrt{b^2-4 a c}}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}\right )}{63 c^2 e^6 \sqrt{d+e x} \sqrt{a+b x+c x^2}}+\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (3 c^2 e^2 \left (28 a^2 e^2-76 a b d e+45 b^2 d^2\right )-b^2 c e^3 (7 b d-15 a e)-4 c^3 d^2 e (64 b d-57 a e)-b^4 e^4+128 c^4 d^4\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{63 c^2 e^6 \sqrt{a+b x+c x^2} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}-\frac{2 \sqrt{d+e x} \sqrt{a+b x+c x^2} \left (-3 c e x \left (-4 c e (8 b d-7 a e)+b^2 e^2+32 c^2 d^2\right )-12 c^2 d e (20 b d-11 a e)+3 b c e^2 (37 b d-36 a e)-b^3 e^3+128 c^3 d^3\right )}{63 c e^5}-\frac{10 \sqrt{d+e x} \left (a+b x+c x^2\right )^{3/2} (-15 b e+16 c d-14 c e x)}{63 e^3}-\frac{2 \left (a+b x+c x^2\right )^{5/2}}{e \sqrt{d+e x}}$

[Out]

(-2*Sqrt[d + e*x]*(128*c^3*d^3 - b^3*e^3 + 3*b*c*e^2*(37*b*d - 36*a*e) - 12*c^2*d*e*(20*b*d - 11*a*e) - 3*c*e*
(32*c^2*d^2 + b^2*e^2 - 4*c*e*(8*b*d - 7*a*e))*x)*Sqrt[a + b*x + c*x^2])/(63*c*e^5) - (10*Sqrt[d + e*x]*(16*c*
d - 15*b*e - 14*c*e*x)*(a + b*x + c*x^2)^(3/2))/(63*e^3) - (2*(a + b*x + c*x^2)^(5/2))/(e*Sqrt[d + e*x]) + (2*
Sqrt[2]*Sqrt[b^2 - 4*a*c]*(128*c^4*d^4 - b^4*e^4 - 4*c^3*d^2*e*(64*b*d - 57*a*e) - b^2*c*e^3*(7*b*d - 15*a*e)
+ 3*c^2*e^2*(45*b^2*d^2 - 76*a*b*d*e + 28*a^2*e^2))*Sqrt[d + e*x]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]
*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(
2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(63*c^2*e^6*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[
a + b*x + c*x^2]) - (2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(2*c*d - b*e)*(c*d^2 - b*d*e + a*e^2)*(128*c^2*d^2 - b^2*e^2
- 4*c*e*(32*b*d - 33*a*e))*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2)
)/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[
b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(63*c^2*e^6*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 1.141, antiderivative size = 716, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 24, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.25, Rules used = {732, 814, 843, 718, 424, 419} $\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (3 c^2 e^2 \left (28 a^2 e^2-76 a b d e+45 b^2 d^2\right )-b^2 c e^3 (7 b d-15 a e)-4 c^3 d^2 e (64 b d-57 a e)-b^4 e^4+128 c^4 d^4\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{63 c^2 e^6 \sqrt{a+b x+c x^2} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}-\frac{2 \sqrt{d+e x} \sqrt{a+b x+c x^2} \left (-3 c e x \left (-4 c e (8 b d-7 a e)+b^2 e^2+32 c^2 d^2\right )-12 c^2 d e (20 b d-11 a e)+3 b c e^2 (37 b d-36 a e)-b^3 e^3+128 c^3 d^3\right )}{63 c e^5}-\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) \left (a e^2-b d e+c d^2\right ) \left (-4 c e (32 b d-33 a e)-b^2 e^2+128 c^2 d^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{63 c^2 e^6 \sqrt{d+e x} \sqrt{a+b x+c x^2}}-\frac{10 \sqrt{d+e x} \left (a+b x+c x^2\right )^{3/2} (-15 b e+16 c d-14 c e x)}{63 e^3}-\frac{2 \left (a+b x+c x^2\right )^{5/2}}{e \sqrt{d+e x}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(a + b*x + c*x^2)^(5/2)/(d + e*x)^(3/2),x]

[Out]

(-2*Sqrt[d + e*x]*(128*c^3*d^3 - b^3*e^3 + 3*b*c*e^2*(37*b*d - 36*a*e) - 12*c^2*d*e*(20*b*d - 11*a*e) - 3*c*e*
(32*c^2*d^2 + b^2*e^2 - 4*c*e*(8*b*d - 7*a*e))*x)*Sqrt[a + b*x + c*x^2])/(63*c*e^5) - (10*Sqrt[d + e*x]*(16*c*
d - 15*b*e - 14*c*e*x)*(a + b*x + c*x^2)^(3/2))/(63*e^3) - (2*(a + b*x + c*x^2)^(5/2))/(e*Sqrt[d + e*x]) + (2*
Sqrt[2]*Sqrt[b^2 - 4*a*c]*(128*c^4*d^4 - b^4*e^4 - 4*c^3*d^2*e*(64*b*d - 57*a*e) - b^2*c*e^3*(7*b*d - 15*a*e)
+ 3*c^2*e^2*(45*b^2*d^2 - 76*a*b*d*e + 28*a^2*e^2))*Sqrt[d + e*x]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]
*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(
2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(63*c^2*e^6*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[
a + b*x + c*x^2]) - (2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(2*c*d - b*e)*(c*d^2 - b*d*e + a*e^2)*(128*c^2*d^2 - b^2*e^2
- 4*c*e*(32*b*d - 33*a*e))*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2)
)/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[
b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(63*c^2*e^6*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 1)), x] - Dist[p/(e*(m + 1)), Int[(d + e*x)^(m + 1)*(b + 2*c*x)*(a + b*x + c*x^2)^
(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ
[2*c*d - b*e, 0] && GtQ[p, 0] && (IntegerQ[p] || LtQ[m, -1]) && NeQ[m, -1] &&  !ILtQ[m + 2*p + 1, 0] && IntQua
draticQ[a, b, c, d, e, m, p, x]

Rule 814

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*(a + b*x + c*x^
2)^p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), x] - Dist[p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a
+ b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2*a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p -
c*d - 2*c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c^2*d^2*(1 + 2*p) - c*e*(b*
d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0
] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])
) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\left (a+b x+c x^2\right )^{5/2}}{(d+e x)^{3/2}} \, dx &=-\frac{2 \left (a+b x+c x^2\right )^{5/2}}{e \sqrt{d+e x}}+\frac{5 \int \frac{(b+2 c x) \left (a+b x+c x^2\right )^{3/2}}{\sqrt{d+e x}} \, dx}{e}\\ &=-\frac{10 \sqrt{d+e x} (16 c d-15 b e-14 c e x) \left (a+b x+c x^2\right )^{3/2}}{63 e^3}-\frac{2 \left (a+b x+c x^2\right )^{5/2}}{e \sqrt{d+e x}}-\frac{10 \int \frac{\left (\frac{1}{2} c \left (15 b^2 d e+4 a c d e-16 b \left (c d^2+a e^2\right )\right )-\frac{1}{2} c \left (32 c^2 d^2+b^2 e^2-4 c e (8 b d-7 a e)\right ) x\right ) \sqrt{a+b x+c x^2}}{\sqrt{d+e x}} \, dx}{21 c e^3}\\ &=-\frac{2 \sqrt{d+e x} \left (128 c^3 d^3-b^3 e^3+3 b c e^2 (37 b d-36 a e)-12 c^2 d e (20 b d-11 a e)-3 c e \left (32 c^2 d^2+b^2 e^2-4 c e (8 b d-7 a e)\right ) x\right ) \sqrt{a+b x+c x^2}}{63 c e^5}-\frac{10 \sqrt{d+e x} (16 c d-15 b e-14 c e x) \left (a+b x+c x^2\right )^{3/2}}{63 e^3}-\frac{2 \left (a+b x+c x^2\right )^{5/2}}{e \sqrt{d+e x}}+\frac{4 \int \frac{\frac{1}{4} c \left (2 \left (32 c^2 d^2+b^2 e^2-4 c e (8 b d-7 a e)\right ) \left (\frac{1}{2} b d (4 c d-b e)-a e \left (c d+\frac{b e}{2}\right )\right )+5 c e (b d-2 a e) \left (15 b^2 d e+4 a c d e-16 b \left (c d^2+a e^2\right )\right )\right )+\frac{1}{2} c \left (128 c^4 d^4-b^4 e^4-4 c^3 d^2 e (64 b d-57 a e)-b^2 c e^3 (7 b d-15 a e)+3 c^2 e^2 \left (45 b^2 d^2-76 a b d e+28 a^2 e^2\right )\right ) x}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{63 c^2 e^5}\\ &=-\frac{2 \sqrt{d+e x} \left (128 c^3 d^3-b^3 e^3+3 b c e^2 (37 b d-36 a e)-12 c^2 d e (20 b d-11 a e)-3 c e \left (32 c^2 d^2+b^2 e^2-4 c e (8 b d-7 a e)\right ) x\right ) \sqrt{a+b x+c x^2}}{63 c e^5}-\frac{10 \sqrt{d+e x} (16 c d-15 b e-14 c e x) \left (a+b x+c x^2\right )^{3/2}}{63 e^3}-\frac{2 \left (a+b x+c x^2\right )^{5/2}}{e \sqrt{d+e x}}+\frac{\left (2 \left (128 c^4 d^4-b^4 e^4-4 c^3 d^2 e (64 b d-57 a e)-b^2 c e^3 (7 b d-15 a e)+3 c^2 e^2 \left (45 b^2 d^2-76 a b d e+28 a^2 e^2\right )\right )\right ) \int \frac{\sqrt{d+e x}}{\sqrt{a+b x+c x^2}} \, dx}{63 c e^6}+\frac{\left (4 \left (-\frac{1}{2} c d \left (128 c^4 d^4-b^4 e^4-4 c^3 d^2 e (64 b d-57 a e)-b^2 c e^3 (7 b d-15 a e)+3 c^2 e^2 \left (45 b^2 d^2-76 a b d e+28 a^2 e^2\right )\right )+\frac{1}{4} c e \left (2 \left (32 c^2 d^2+b^2 e^2-4 c e (8 b d-7 a e)\right ) \left (\frac{1}{2} b d (4 c d-b e)-a e \left (c d+\frac{b e}{2}\right )\right )+5 c e (b d-2 a e) \left (15 b^2 d e+4 a c d e-16 b \left (c d^2+a e^2\right )\right )\right )\right )\right ) \int \frac{1}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{63 c^2 e^6}\\ &=-\frac{2 \sqrt{d+e x} \left (128 c^3 d^3-b^3 e^3+3 b c e^2 (37 b d-36 a e)-12 c^2 d e (20 b d-11 a e)-3 c e \left (32 c^2 d^2+b^2 e^2-4 c e (8 b d-7 a e)\right ) x\right ) \sqrt{a+b x+c x^2}}{63 c e^5}-\frac{10 \sqrt{d+e x} (16 c d-15 b e-14 c e x) \left (a+b x+c x^2\right )^{3/2}}{63 e^3}-\frac{2 \left (a+b x+c x^2\right )^{5/2}}{e \sqrt{d+e x}}+\frac{\left (2 \sqrt{2} \sqrt{b^2-4 a c} \left (128 c^4 d^4-b^4 e^4-4 c^3 d^2 e (64 b d-57 a e)-b^2 c e^3 (7 b d-15 a e)+3 c^2 e^2 \left (45 b^2 d^2-76 a b d e+28 a^2 e^2\right )\right ) \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{63 c^2 e^6 \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{a+b x+c x^2}}+\frac{\left (8 \sqrt{2} \sqrt{b^2-4 a c} \left (-\frac{1}{2} c d \left (128 c^4 d^4-b^4 e^4-4 c^3 d^2 e (64 b d-57 a e)-b^2 c e^3 (7 b d-15 a e)+3 c^2 e^2 \left (45 b^2 d^2-76 a b d e+28 a^2 e^2\right )\right )+\frac{1}{4} c e \left (2 \left (32 c^2 d^2+b^2 e^2-4 c e (8 b d-7 a e)\right ) \left (\frac{1}{2} b d (4 c d-b e)-a e \left (c d+\frac{b e}{2}\right )\right )+5 c e (b d-2 a e) \left (15 b^2 d e+4 a c d e-16 b \left (c d^2+a e^2\right )\right )\right )\right ) \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{63 c^3 e^6 \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ &=-\frac{2 \sqrt{d+e x} \left (128 c^3 d^3-b^3 e^3+3 b c e^2 (37 b d-36 a e)-12 c^2 d e (20 b d-11 a e)-3 c e \left (32 c^2 d^2+b^2 e^2-4 c e (8 b d-7 a e)\right ) x\right ) \sqrt{a+b x+c x^2}}{63 c e^5}-\frac{10 \sqrt{d+e x} (16 c d-15 b e-14 c e x) \left (a+b x+c x^2\right )^{3/2}}{63 e^3}-\frac{2 \left (a+b x+c x^2\right )^{5/2}}{e \sqrt{d+e x}}+\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \left (128 c^4 d^4-b^4 e^4-4 c^3 d^2 e (64 b d-57 a e)-b^2 c e^3 (7 b d-15 a e)+3 c^2 e^2 \left (45 b^2 d^2-76 a b d e+28 a^2 e^2\right )\right ) \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{63 c^2 e^6 \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{a+b x+c x^2}}-\frac{2 \sqrt{2} \sqrt{b^2-4 a c} (2 c d-b e) \left (c d^2-b d e+a e^2\right ) \left (128 c^2 d^2-128 b c d e-b^2 e^2+132 a c e^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{63 c^2 e^6 \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 13.7321, size = 7946, normalized size = 11.1 $\text{Result too large to show}$

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*x + c*x^2)^(5/2)/(d + e*x)^(3/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [B]  time = 0.351, size = 9187, normalized size = 12.8 \begin{align*} \text{output too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(5/2)/(e*x+d)^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c x^{2} + b x + a\right )}^{\frac{5}{2}}}{{\left (e x + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(5/2)/(e*x+d)^(3/2),x, algorithm="maxima")

[Out]

integrate((c*x^2 + b*x + a)^(5/2)/(e*x + d)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (c^{2} x^{4} + 2 \, b c x^{3} + 2 \, a b x +{\left (b^{2} + 2 \, a c\right )} x^{2} + a^{2}\right )} \sqrt{c x^{2} + b x + a} \sqrt{e x + d}}{e^{2} x^{2} + 2 \, d e x + d^{2}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(5/2)/(e*x+d)^(3/2),x, algorithm="fricas")

[Out]

integral((c^2*x^4 + 2*b*c*x^3 + 2*a*b*x + (b^2 + 2*a*c)*x^2 + a^2)*sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)/(e^2*x^
2 + 2*d*e*x + d^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x + c x^{2}\right )^{\frac{5}{2}}}{\left (d + e x\right )^{\frac{3}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(5/2)/(e*x+d)**(3/2),x)

[Out]

Integral((a + b*x + c*x**2)**(5/2)/(d + e*x)**(3/2), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(5/2)/(e*x+d)^(3/2),x, algorithm="giac")

[Out]

Timed out