### 3.2450 $$\int \frac{(a+b x+c x^2)^{3/2}}{(d+e x)^{3/2}} \, dx$$

Optimal. Leaf size=515 $-\frac{16 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) \left (a e^2-b d e+c d^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right ),-\frac{2 e \sqrt{b^2-4 a c}}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}\right )}{5 c e^4 \sqrt{d+e x} \sqrt{a+b x+c x^2}}+\frac{\sqrt{2} \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (-4 c e (4 b d-3 a e)+b^2 e^2+16 c^2 d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{5 c e^4 \sqrt{a+b x+c x^2} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}-\frac{2 \sqrt{d+e x} \sqrt{a+b x+c x^2} (-7 b e+8 c d-6 c e x)}{5 e^3}-\frac{2 \left (a+b x+c x^2\right )^{3/2}}{e \sqrt{d+e x}}$

[Out]

(-2*Sqrt[d + e*x]*(8*c*d - 7*b*e - 6*c*e*x)*Sqrt[a + b*x + c*x^2])/(5*e^3) - (2*(a + b*x + c*x^2)^(3/2))/(e*Sq
rt[d + e*x]) + (Sqrt[2]*Sqrt[b^2 - 4*a*c]*(16*c^2*d^2 + b^2*e^2 - 4*c*e*(4*b*d - 3*a*e))*Sqrt[d + e*x]*Sqrt[-(
(c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]
/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(5*c*e^4*Sqrt[(c*(d + e*x))/(2*c*d -
(b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) - (16*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(2*c*d - b*e)*(c*d^2 - b*d
*e + a*e^2)*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c)
)]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)
/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(5*c*e^4*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.521268, antiderivative size = 515, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 24, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.25, Rules used = {732, 814, 843, 718, 424, 419} $\frac{\sqrt{2} \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (-4 c e (4 b d-3 a e)+b^2 e^2+16 c^2 d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{5 c e^4 \sqrt{a+b x+c x^2} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}-\frac{16 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) \left (a e^2-b d e+c d^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{5 c e^4 \sqrt{d+e x} \sqrt{a+b x+c x^2}}-\frac{2 \sqrt{d+e x} \sqrt{a+b x+c x^2} (-7 b e+8 c d-6 c e x)}{5 e^3}-\frac{2 \left (a+b x+c x^2\right )^{3/2}}{e \sqrt{d+e x}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(a + b*x + c*x^2)^(3/2)/(d + e*x)^(3/2),x]

[Out]

(-2*Sqrt[d + e*x]*(8*c*d - 7*b*e - 6*c*e*x)*Sqrt[a + b*x + c*x^2])/(5*e^3) - (2*(a + b*x + c*x^2)^(3/2))/(e*Sq
rt[d + e*x]) + (Sqrt[2]*Sqrt[b^2 - 4*a*c]*(16*c^2*d^2 + b^2*e^2 - 4*c*e*(4*b*d - 3*a*e))*Sqrt[d + e*x]*Sqrt[-(
(c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]
/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(5*c*e^4*Sqrt[(c*(d + e*x))/(2*c*d -
(b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) - (16*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(2*c*d - b*e)*(c*d^2 - b*d
*e + a*e^2)*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c)
)]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)
/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(5*c*e^4*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 1)), x] - Dist[p/(e*(m + 1)), Int[(d + e*x)^(m + 1)*(b + 2*c*x)*(a + b*x + c*x^2)^
(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ
[2*c*d - b*e, 0] && GtQ[p, 0] && (IntegerQ[p] || LtQ[m, -1]) && NeQ[m, -1] &&  !ILtQ[m + 2*p + 1, 0] && IntQua
draticQ[a, b, c, d, e, m, p, x]

Rule 814

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*(a + b*x + c*x^
2)^p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), x] - Dist[p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a
+ b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2*a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p -
c*d - 2*c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c^2*d^2*(1 + 2*p) - c*e*(b*
d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0
] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])
) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\left (a+b x+c x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx &=-\frac{2 \left (a+b x+c x^2\right )^{3/2}}{e \sqrt{d+e x}}+\frac{3 \int \frac{(b+2 c x) \sqrt{a+b x+c x^2}}{\sqrt{d+e x}} \, dx}{e}\\ &=-\frac{2 \sqrt{d+e x} (8 c d-7 b e-6 c e x) \sqrt{a+b x+c x^2}}{5 e^3}-\frac{2 \left (a+b x+c x^2\right )^{3/2}}{e \sqrt{d+e x}}-\frac{2 \int \frac{\frac{1}{2} c \left (7 b^2 d e+4 a c d e-8 b \left (c d^2+a e^2\right )\right )-\frac{1}{2} c \left (16 c^2 d^2+b^2 e^2-4 c e (4 b d-3 a e)\right ) x}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{5 c e^3}\\ &=-\frac{2 \sqrt{d+e x} (8 c d-7 b e-6 c e x) \sqrt{a+b x+c x^2}}{5 e^3}-\frac{2 \left (a+b x+c x^2\right )^{3/2}}{e \sqrt{d+e x}}-\frac{\left (8 (2 c d-b e) \left (c d^2-b d e+a e^2\right )\right ) \int \frac{1}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{5 e^4}+\frac{\left (16 c^2 d^2+b^2 e^2-4 c e (4 b d-3 a e)\right ) \int \frac{\sqrt{d+e x}}{\sqrt{a+b x+c x^2}} \, dx}{5 e^4}\\ &=-\frac{2 \sqrt{d+e x} (8 c d-7 b e-6 c e x) \sqrt{a+b x+c x^2}}{5 e^3}-\frac{2 \left (a+b x+c x^2\right )^{3/2}}{e \sqrt{d+e x}}+\frac{\left (\sqrt{2} \sqrt{b^2-4 a c} \left (16 c^2 d^2+b^2 e^2-4 c e (4 b d-3 a e)\right ) \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{5 c e^4 \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{a+b x+c x^2}}-\frac{\left (16 \sqrt{2} \sqrt{b^2-4 a c} (2 c d-b e) \left (c d^2-b d e+a e^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{5 c e^4 \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ &=-\frac{2 \sqrt{d+e x} (8 c d-7 b e-6 c e x) \sqrt{a+b x+c x^2}}{5 e^3}-\frac{2 \left (a+b x+c x^2\right )^{3/2}}{e \sqrt{d+e x}}+\frac{\sqrt{2} \sqrt{b^2-4 a c} \left (16 c^2 d^2+b^2 e^2-4 c e (4 b d-3 a e)\right ) \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{5 c e^4 \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{a+b x+c x^2}}-\frac{16 \sqrt{2} \sqrt{b^2-4 a c} (2 c d-b e) \left (c d^2-b d e+a e^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{5 c e^4 \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 10.8256, size = 732, normalized size = 1.42 $\frac{-\frac{i (d+e x) \sqrt{1-\frac{2 \left (e (a e-b d)+c d^2\right )}{(d+e x) \left (\sqrt{e^2 \left (b^2-4 a c\right )}-b e+2 c d\right )}} \sqrt{\frac{4 \left (e (a e-b d)+c d^2\right )}{(d+e x) \left (\sqrt{e^2 \left (b^2-4 a c\right )}+b e-2 c d\right )}+2} \left (\left (\sqrt{e^2 \left (b^2-4 a c\right )}-b e+2 c d\right ) \left (4 c e (3 a e-4 b d)+b^2 e^2+16 c^2 d^2\right ) E\left (i \sinh ^{-1}\left (\frac{\sqrt{2} \sqrt{\frac{c d^2-b e d+a e^2}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}{\sqrt{d+e x}}\right )|-\frac{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}}\right )-\left (4 c \left (4 c d^2 \sqrt{e^2 \left (b^2-4 a c\right )}+a e^2 \left (3 \sqrt{e^2 \left (b^2-4 a c\right )}-2 c d\right )\right )+b^2 e^2 \left (\sqrt{e^2 \left (b^2-4 a c\right )}+2 c d\right )+4 b \left (a c e^3-4 c d e \sqrt{e^2 \left (b^2-4 a c\right )}\right )-b^3 e^3\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{2} \sqrt{\frac{a e^2-b d e+c d^2}{\sqrt{e^2 \left (b^2-4 a c\right )}+b e-2 c d}}}{\sqrt{d+e x}}\right ),-\frac{\sqrt{e^2 \left (b^2-4 a c\right )}+b e-2 c d}{\sqrt{e^2 \left (b^2-4 a c\right )}-b e+2 c d}\right )\right )}{c \sqrt{\frac{e (a e-b d)+c d^2}{\sqrt{e^2 \left (b^2-4 a c\right )}+b e-2 c d}}}+\frac{4 e^2 (a+x (b+c x)) \left (4 c e (3 a e-4 b d)+b^2 e^2+16 c^2 d^2\right )}{c \sqrt{d+e x}}+\frac{4 e^2 (a+x (b+c x)) \left (e (-5 a e+7 b d+2 b e x)+c \left (-8 d^2-2 d e x+e^2 x^2\right )\right )}{\sqrt{d+e x}}}{10 e^5 \sqrt{a+x (b+c x)}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(a + b*x + c*x^2)^(3/2)/(d + e*x)^(3/2),x]

[Out]

((4*e^2*(16*c^2*d^2 + b^2*e^2 + 4*c*e*(-4*b*d + 3*a*e))*(a + x*(b + c*x)))/(c*Sqrt[d + e*x]) + (4*e^2*(a + x*(
b + c*x))*(e*(7*b*d - 5*a*e + 2*b*e*x) + c*(-8*d^2 - 2*d*e*x + e^2*x^2)))/Sqrt[d + e*x] - (I*(d + e*x)*Sqrt[1
- (2*(c*d^2 + e*(-(b*d) + a*e)))/((2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Sqrt[2 + (4*(c*d^2 + e*(
-(b*d) + a*e)))/((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*((2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])
*(16*c^2*d^2 + b^2*e^2 + 4*c*e*(-4*b*d + 3*a*e))*EllipticE[I*ArcSinh[(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2
*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt[d + e*x]], -((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*
e + Sqrt[(b^2 - 4*a*c)*e^2]))] - (-(b^3*e^3) + b^2*e^2*(2*c*d + Sqrt[(b^2 - 4*a*c)*e^2]) + 4*b*(a*c*e^3 - 4*c*
d*e*Sqrt[(b^2 - 4*a*c)*e^2]) + 4*c*(4*c*d^2*Sqrt[(b^2 - 4*a*c)*e^2] + a*e^2*(-2*c*d + 3*Sqrt[(b^2 - 4*a*c)*e^2
])))*EllipticF[I*ArcSinh[(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt
[d + e*x]], -((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))]))/(c*Sqrt[(c*
d^2 + e*(-(b*d) + a*e))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])]))/(10*e^5*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

Maple [B]  time = 0.331, size = 4364, normalized size = 8.5 \begin{align*} \text{output too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(3/2)/(e*x+d)^(3/2),x)

[Out]

2/5*(c*x^2+b*x+a)^(1/2)*(e*x+d)^(1/2)*(3*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*
c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2
)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b
^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b^3*d*e^3+12*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)
^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+
(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2
)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a^2*c*e^4-16*2
^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a
*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2
)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+
b^2)^(1/2)))^(1/2))*c^3*d^4+7*a*b*c*d*e^3-8*x*b*c^2*d^2*e^2-2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*
d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1
/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(
1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*b^2*e^4+2^(1/2)*(-(e*x+d)*c
/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1
/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(
-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)
)*b^3*d*e^3-3*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*
c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*E
llipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d
-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*b^2*e^4+8*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*
(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a
*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4
*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/2)*a*c*d*e^3-12*2^(1/2)*(-
(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(
1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+
d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2
)))^(1/2))*(-4*a*c+b^2)^(1/2)*b*c*d^2*e^2-12*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-
b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c
+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a
*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*b*c*d*e^3+28*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*
c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+
2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2
)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*b*c*d*
e^3+x^4*c^3*e^4+5*x^2*b*c^2*d*e^3-12*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+
(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1
/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^
(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a^2*c*e^4+12*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/
2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*
a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*
e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*c^2*d^2*e^2-28*2
^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a
*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2
)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+
b^2)^(1/2)))^(1/2))*a*c^2*d^2*e^2-17*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+
(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1
/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^
(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b^2*c*d^2*e^2-3*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^
(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(
-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)
+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b^2*c*d^2*e^2+4
*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4
*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1
/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*
c+b^2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/2)*b^2*d*e^3+8*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/
2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e
*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-
(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/2)*c^2*d^3*e+32*2^(1
/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+
b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(
-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2
)^(1/2)))^(1/2))*b*c^2*d^3*e-4*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*
c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*
e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+
b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/2)*a*b*e^4+3*x^3*b*c^2*e^4-2*x^3*c^3*d*e^3
-4*x^2*a*c^2*e^4+2*x^2*b^2*c*e^4-8*x^2*c^3*d^2*e^2-5*a^2*c*e^4-3*x*a*b*c*e^4-2*x*a*c^2*d*e^3+7*x*b^2*c*d*e^3-8
*a*c^2*d^2*e^2)/c/(c*e*x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)/e^5

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}{{\left (e x + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(e*x+d)^(3/2),x, algorithm="maxima")

[Out]

integrate((c*x^2 + b*x + a)^(3/2)/(e*x + d)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}} \sqrt{e x + d}}{e^{2} x^{2} + 2 \, d e x + d^{2}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(e*x+d)^(3/2),x, algorithm="fricas")

[Out]

integral((c*x^2 + b*x + a)^(3/2)*sqrt(e*x + d)/(e^2*x^2 + 2*d*e*x + d^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x + c x^{2}\right )^{\frac{3}{2}}}{\left (d + e x\right )^{\frac{3}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(3/2)/(e*x+d)**(3/2),x)

[Out]

Integral((a + b*x + c*x**2)**(3/2)/(d + e*x)**(3/2), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(e*x+d)^(3/2),x, algorithm="giac")

[Out]

Timed out