### 3.2444 $$\int \frac{\sqrt{a+b x+c x^2}}{(d+e x)^{3/2}} \, dx$$

Optimal. Leaf size=419 $-\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right ),-\frac{2 e \sqrt{b^2-4 a c}}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}\right )}{c e^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}+\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{e^2 \sqrt{a+b x+c x^2} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}-\frac{2 \sqrt{a+b x+c x^2}}{e \sqrt{d+e x}}$

[Out]

(-2*Sqrt[a + b*x + c*x^2])/(e*Sqrt[d + e*x]) + (2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*Sqrt[d + e*x]*Sqrt[-((c*(a + b*x +
c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-
2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(e^2*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 -
4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) - (2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(2*c*d - b*e)*Sqrt[(c*(d + e*x))/(2*c*d - (b
+ Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4
*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(c*
e^2*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.266012, antiderivative size = 419, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 24, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.208, Rules used = {732, 843, 718, 424, 419} $-\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{c e^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}+\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{e^2 \sqrt{a+b x+c x^2} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}-\frac{2 \sqrt{a+b x+c x^2}}{e \sqrt{d+e x}}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sqrt[a + b*x + c*x^2]/(d + e*x)^(3/2),x]

[Out]

(-2*Sqrt[a + b*x + c*x^2])/(e*Sqrt[d + e*x]) + (2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*Sqrt[d + e*x]*Sqrt[-((c*(a + b*x +
c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-
2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(e^2*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 -
4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) - (2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(2*c*d - b*e)*Sqrt[(c*(d + e*x))/(2*c*d - (b
+ Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4
*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(c*
e^2*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 1)), x] - Dist[p/(e*(m + 1)), Int[(d + e*x)^(m + 1)*(b + 2*c*x)*(a + b*x + c*x^2)^
(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ
[2*c*d - b*e, 0] && GtQ[p, 0] && (IntegerQ[p] || LtQ[m, -1]) && NeQ[m, -1] &&  !ILtQ[m + 2*p + 1, 0] && IntQua
draticQ[a, b, c, d, e, m, p, x]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b x+c x^2}}{(d+e x)^{3/2}} \, dx &=-\frac{2 \sqrt{a+b x+c x^2}}{e \sqrt{d+e x}}+\frac{\int \frac{b+2 c x}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{e}\\ &=-\frac{2 \sqrt{a+b x+c x^2}}{e \sqrt{d+e x}}+\frac{(2 c) \int \frac{\sqrt{d+e x}}{\sqrt{a+b x+c x^2}} \, dx}{e^2}-\frac{(2 c d-b e) \int \frac{1}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{e^2}\\ &=-\frac{2 \sqrt{a+b x+c x^2}}{e \sqrt{d+e x}}+\frac{\left (2 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{e^2 \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{a+b x+c x^2}}-\frac{\left (2 \sqrt{2} \sqrt{b^2-4 a c} (2 c d-b e) \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{c e^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ &=-\frac{2 \sqrt{a+b x+c x^2}}{e \sqrt{d+e x}}+\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{e^2 \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{a+b x+c x^2}}-\frac{2 \sqrt{2} \sqrt{b^2-4 a c} (2 c d-b e) \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{c e^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 4.69933, size = 865, normalized size = 2.06 $\frac{4 c x^2 e^2+4 (a+b x) e^2-2 (a+x (b+c x)) e^2-\frac{i \sqrt{2} \left (2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) (d+e x)^{3/2} \sqrt{\frac{-2 a e^2+2 c d x e+\sqrt{\left (b^2-4 a c\right ) e^2} x e+b (d-e x) e+d \sqrt{\left (b^2-4 a c\right ) e^2}}{\left (2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \sqrt{\frac{2 a e^2-2 c d x e+\sqrt{\left (b^2-4 a c\right ) e^2} x e+b (e x-d) e+d \sqrt{\left (b^2-4 a c\right ) e^2}}{\left (-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{2} \sqrt{\frac{c d^2-b e d+a e^2}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}{\sqrt{d+e x}}\right )|-\frac{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}}\right )}{\sqrt{\frac{c d^2+e (a e-b d)}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}+\frac{i \sqrt{2} \sqrt{\left (b^2-4 a c\right ) e^2} (d+e x)^{3/2} \sqrt{\frac{-2 a e^2+2 c d x e+\sqrt{\left (b^2-4 a c\right ) e^2} x e+b (d-e x) e+d \sqrt{\left (b^2-4 a c\right ) e^2}}{\left (2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \sqrt{\frac{2 a e^2-2 c d x e+\sqrt{\left (b^2-4 a c\right ) e^2} x e+b (e x-d) e+d \sqrt{\left (b^2-4 a c\right ) e^2}}{\left (-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{2} \sqrt{\frac{c d^2-b e d+a e^2}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}{\sqrt{d+e x}}\right ),-\frac{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}}\right )}{\sqrt{\frac{c d^2+e (a e-b d)}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}}{e^3 \sqrt{d+e x} \sqrt{a+x (b+c x)}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Sqrt[a + b*x + c*x^2]/(d + e*x)^(3/2),x]

[Out]

(4*c*e^2*x^2 + 4*e^2*(a + b*x) - 2*e^2*(a + x*(b + c*x)) - (I*Sqrt[2]*(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])*
(d + e*x)^(3/2)*Sqrt[(-2*a*e^2 + d*Sqrt[(b^2 - 4*a*c)*e^2] + 2*c*d*e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]*x + b*e*(d
- e*x))/((2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Sqrt[(2*a*e^2 + d*Sqrt[(b^2 - 4*a*c)*e^2] - 2*c*d
*e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]*x + b*e*(-d + e*x))/((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Ell
ipticE[I*ArcSinh[(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt[d + e*x
]], -((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))])/Sqrt[(c*d^2 + e*(-(b
*d) + a*e))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])] + (I*Sqrt[2]*Sqrt[(b^2 - 4*a*c)*e^2]*(d + e*x)^(3/2)*Sqr
t[(-2*a*e^2 + d*Sqrt[(b^2 - 4*a*c)*e^2] + 2*c*d*e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]*x + b*e*(d - e*x))/((2*c*d - b
*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Sqrt[(2*a*e^2 + d*Sqrt[(b^2 - 4*a*c)*e^2] - 2*c*d*e*x + e*Sqrt[(b^2
- 4*a*c)*e^2]*x + b*e*(-d + e*x))/((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*EllipticF[I*ArcSinh[(S
qrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt[d + e*x]], -((-2*c*d + b*e
+ Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))])/Sqrt[(c*d^2 + e*(-(b*d) + a*e))/(-2*c*d
+ b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/(e^3*Sqrt[d + e*x]*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

Maple [B]  time = 0.427, size = 1595, normalized size = 3.8 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(1/2)/(e*x+d)^(3/2),x)

[Out]

(c*x^2+b*x+a)^(1/2)*(e*x+d)^(1/2)*(4*2^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(
1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*c*e^2*(-(e*x+d)*c/(e*(-4*a*
c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+
2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)-2^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4
*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*
b^2*e^2*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*
a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)-2^(1/2)*Ellipti
cF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e
*(-4*a*c+b^2)^(1/2)))^(1/2))*b*e^2*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^
2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*
c*d))^(1/2)*(-4*a*c+b^2)^(1/2)+2*2^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)
,(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*c*d*e*(-(e*x+d)*c/(e*(-4*a*c+b^2)
^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+
(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(-4*a*c+b^2)^(1/2)-4*2^(1/2)*EllipticE(2^(1/2)*(-(
e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^
(1/2)))^(1/2))*a*c*e^2*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2
*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)+
4*2^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*
c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b*c*d*e*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(
-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*
c+b^2)^(1/2)+b*e-2*c*d))^(1/2)-4*2^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)
,(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*c^2*d^2*(-(e*x+d)*c/(e*(-4*a*c+b^
2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*
x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)-2*c^2*e^2*x^2-2*b*c*e^2*x-2*a*c*e^2)/c/(c*e*x^3+
b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)/e^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2} + b x + a}}{{\left (e x + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(e*x+d)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + b*x + a)/(e*x + d)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + b x + a} \sqrt{e x + d}}{e^{2} x^{2} + 2 \, d e x + d^{2}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(e*x+d)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)/(e^2*x^2 + 2*d*e*x + d^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + b x + c x^{2}}}{\left (d + e x\right )^{\frac{3}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(1/2)/(e*x+d)**(3/2),x)

[Out]

Integral(sqrt(a + b*x + c*x**2)/(d + e*x)**(3/2), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(e*x+d)^(3/2),x, algorithm="giac")

[Out]

Timed out