### 3.2443 $$\int \frac{\sqrt{a+b x+c x^2}}{\sqrt{d+e x}} \, dx$$

Optimal. Leaf size=444 $\frac{4 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (a e^2-b d e+c d^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right ),-\frac{2 e \sqrt{b^2-4 a c}}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}\right )}{3 c e^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}-\frac{\sqrt{2} \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 c e^2 \sqrt{a+b x+c x^2} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}+\frac{2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}{3 e}$

[Out]

(2*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])/(3*e) - (Sqrt[2]*Sqrt[b^2 - 4*a*c]*(2*c*d - b*e)*Sqrt[d + e*x]*Sqrt[-(
(c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]
/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(3*c*e^2*Sqrt[(c*(d + e*x))/(2*c*d -
(b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) + (4*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(c*d^2 - b*d*e + a*e^2)*Sqr
t[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[Ar
cSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b +
Sqrt[b^2 - 4*a*c])*e)])/(3*c*e^2*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.307537, antiderivative size = 444, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 24, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.208, Rules used = {734, 843, 718, 424, 419} $\frac{4 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (a e^2-b d e+c d^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 c e^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}-\frac{\sqrt{2} \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 c e^2 \sqrt{a+b x+c x^2} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}+\frac{2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}{3 e}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x],x]

[Out]

(2*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])/(3*e) - (Sqrt[2]*Sqrt[b^2 - 4*a*c]*(2*c*d - b*e)*Sqrt[d + e*x]*Sqrt[-(
(c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]
/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(3*c*e^2*Sqrt[(c*(d + e*x))/(2*c*d -
(b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) + (4*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(c*d^2 - b*d*e + a*e^2)*Sqr
t[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[Ar
cSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b +
Sqrt[b^2 - 4*a*c])*e)])/(3*c*e^2*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

Rule 734

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b x+c x^2}}{\sqrt{d+e x}} \, dx &=\frac{2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}{3 e}-\frac{\int \frac{b d-2 a e+(2 c d-b e) x}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{3 e}\\ &=\frac{2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}{3 e}-\frac{(2 c d-b e) \int \frac{\sqrt{d+e x}}{\sqrt{a+b x+c x^2}} \, dx}{3 e^2}+\frac{\left (2 \left (c d^2-b d e+a e^2\right )\right ) \int \frac{1}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{3 e^2}\\ &=\frac{2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}{3 e}-\frac{\left (\sqrt{2} \sqrt{b^2-4 a c} (2 c d-b e) \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{3 c e^2 \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{a+b x+c x^2}}+\frac{\left (4 \sqrt{2} \sqrt{b^2-4 a c} \left (c d^2-b d e+a e^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{3 c e^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ &=\frac{2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}{3 e}-\frac{\sqrt{2} \sqrt{b^2-4 a c} (2 c d-b e) \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 c e^2 \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{a+b x+c x^2}}+\frac{4 \sqrt{2} \sqrt{b^2-4 a c} \left (c d^2-b d e+a e^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3 c e^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 8.48868, size = 936, normalized size = 2.11 $\frac{\sqrt{d+e x} \left (4 (a+x (b+c x)) e^2+\frac{(d+e x) \left (\frac{4 (b e-2 c d) \sqrt{\frac{c d^2+e (a e-b d)}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}} (a+x (b+c x)) e^2}{(d+e x)^2}+\frac{i \sqrt{2} (2 c d-b e) \left (2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) \sqrt{\frac{-2 a e^2+2 c d x e+\sqrt{\left (b^2-4 a c\right ) e^2} x e+b (d-e x) e+d \sqrt{\left (b^2-4 a c\right ) e^2}}{\left (2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \sqrt{\frac{2 a e^2-2 c d x e+\sqrt{\left (b^2-4 a c\right ) e^2} x e+b (e x-d) e+d \sqrt{\left (b^2-4 a c\right ) e^2}}{\left (-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{2} \sqrt{\frac{c d^2-b e d+a e^2}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}{\sqrt{d+e x}}\right )|-\frac{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}}\right )}{\sqrt{d+e x}}-\frac{i \sqrt{2} \left (b^2 e^2-4 a c e^2-b \sqrt{\left (b^2-4 a c\right ) e^2} e+2 c d \sqrt{\left (b^2-4 a c\right ) e^2}\right ) \sqrt{\frac{-2 a e^2+2 c d x e+\sqrt{\left (b^2-4 a c\right ) e^2} x e+b (d-e x) e+d \sqrt{\left (b^2-4 a c\right ) e^2}}{\left (2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \sqrt{\frac{2 a e^2-2 c d x e+\sqrt{\left (b^2-4 a c\right ) e^2} x e+b (e x-d) e+d \sqrt{\left (b^2-4 a c\right ) e^2}}{\left (-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{2} \sqrt{\frac{c d^2-b e d+a e^2}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}{\sqrt{d+e x}}\right ),-\frac{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}}\right )}{\sqrt{d+e x}}\right )}{c \sqrt{\frac{c d^2+e (a e-b d)}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}\right )}{6 e^3 \sqrt{a+x (b+c x)}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x],x]

[Out]

(Sqrt[d + e*x]*(4*e^2*(a + x*(b + c*x)) + ((d + e*x)*((4*e^2*(-2*c*d + b*e)*Sqrt[(c*d^2 + e*(-(b*d) + a*e))/(-
2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])]*(a + x*(b + c*x)))/(d + e*x)^2 + (I*Sqrt[2]*(2*c*d - b*e)*(2*c*d - b*e
+ Sqrt[(b^2 - 4*a*c)*e^2])*Sqrt[(-2*a*e^2 + d*Sqrt[(b^2 - 4*a*c)*e^2] + 2*c*d*e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]
*x + b*e*(d - e*x))/((2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Sqrt[(2*a*e^2 + d*Sqrt[(b^2 - 4*a*c)*
e^2] - 2*c*d*e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]*x + b*e*(-d + e*x))/((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d
+ e*x))]*EllipticE[I*ArcSinh[(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/
Sqrt[d + e*x]], -((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))])/Sqrt[d +
e*x] - (I*Sqrt[2]*(b^2*e^2 - 4*a*c*e^2 + 2*c*d*Sqrt[(b^2 - 4*a*c)*e^2] - b*e*Sqrt[(b^2 - 4*a*c)*e^2])*Sqrt[(-
2*a*e^2 + d*Sqrt[(b^2 - 4*a*c)*e^2] + 2*c*d*e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]*x + b*e*(d - e*x))/((2*c*d - b*e +
Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Sqrt[(2*a*e^2 + d*Sqrt[(b^2 - 4*a*c)*e^2] - 2*c*d*e*x + e*Sqrt[(b^2 - 4*
a*c)*e^2]*x + b*e*(-d + e*x))/((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*EllipticF[I*ArcSinh[(Sqrt[
2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt[d + e*x]], -((-2*c*d + b*e + S
qrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))])/Sqrt[d + e*x]))/(c*Sqrt[(c*d^2 + e*(-(b*d)
+ a*e))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])))/(6*e^3*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

Maple [B]  time = 0.481, size = 1854, normalized size = 4.2 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(1/2)/(e*x+d)^(1/2),x)

[Out]

-2/3*(c*x^2+b*x+a)^(1/2)*(e*x+d)^(1/2)/c*(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2
*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^
2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+
b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/2)*a*e^3-2^(1/2)*(-(e*x+d)*c/(e
*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)
*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*
a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*(
-4*a*c+b^2)^(1/2)*b*d*e^2+2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2
)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c
*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2
*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/2)*c*d^2*e+2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^
(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(
-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)
+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*b*e^3-2*2^(1/
2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b
^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-
(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)
^(1/2)))^(1/2))*a*c*d*e^2-2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2
)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c
*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2
*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b^2*d*e^2+3*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d
))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/
2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1
/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b*c*d^2*e-2*2^(1/2)*(-(e*x+d)*
c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(
1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*
(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2
))*c^2*d^3-x^3*c^2*e^3-x^2*b*c*e^3-x^2*c^2*d*e^2-x*a*c*e^3-x*b*c*d*e^2-a*d*e^2*c)/(c*e*x^3+b*e*x^2+c*d*x^2+a*e
*x+b*d*x+a*d)/e^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2} + b x + a}}{\sqrt{e x + d}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + b*x + a)/sqrt(e*x + d), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + b x + a}}{\sqrt{e x + d}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x + a)/sqrt(e*x + d), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + b x + c x^{2}}}{\sqrt{d + e x}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(1/2)/(e*x+d)**(1/2),x)

[Out]

Integral(sqrt(a + b*x + c*x**2)/sqrt(d + e*x), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

Timed out