### 3.2442 $$\int \sqrt{d+e x} \sqrt{a+b x+c x^2} \, dx$$

Optimal. Leaf size=513 $\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) \left (a e^2-b d e+c d^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right ),-\frac{2 e \sqrt{b^2-4 a c}}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}\right )}{15 c^2 e^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}-\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (-c e (3 a e+b d)+b^2 e^2+c^2 d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{15 c^2 e^2 \sqrt{a+b x+c x^2} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}+\frac{2 (d+e x)^{3/2} \sqrt{a+b x+c x^2}}{5 e}-\frac{2 \sqrt{d+e x} \sqrt{a+b x+c x^2} (2 c d-b e)}{15 c e}$

[Out]

(-2*(2*c*d - b*e)*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])/(15*c*e) + (2*(d + e*x)^(3/2)*Sqrt[a + b*x + c*x^2])/(5
*e) - (2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(c^2*d^2 + b^2*e^2 - c*e*(b*d + 3*a*e))*Sqrt[d + e*x]*Sqrt[-((c*(a + b*x +
c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2
*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(15*c^2*e^2*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[
b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) + (2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(2*c*d - b*e)*(c*d^2 - b*d*e + a*e^2)*
Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF
[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b
+ Sqrt[b^2 - 4*a*c])*e)])/(15*c^2*e^2*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.49166, antiderivative size = 513, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 24, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.25, Rules used = {734, 832, 843, 718, 424, 419} $\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) \left (a e^2-b d e+c d^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{15 c^2 e^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}-\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (-c e (3 a e+b d)+b^2 e^2+c^2 d^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{15 c^2 e^2 \sqrt{a+b x+c x^2} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}}+\frac{2 (d+e x)^{3/2} \sqrt{a+b x+c x^2}}{5 e}-\frac{2 \sqrt{d+e x} \sqrt{a+b x+c x^2} (2 c d-b e)}{15 c e}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2],x]

[Out]

(-2*(2*c*d - b*e)*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])/(15*c*e) + (2*(d + e*x)^(3/2)*Sqrt[a + b*x + c*x^2])/(5
*e) - (2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(c^2*d^2 + b^2*e^2 - c*e*(b*d + 3*a*e))*Sqrt[d + e*x]*Sqrt[-((c*(a + b*x +
c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2
*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(15*c^2*e^2*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[
b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2]) + (2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(2*c*d - b*e)*(c*d^2 - b*d*e + a*e^2)*
Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF
[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b
+ Sqrt[b^2 - 4*a*c])*e)])/(15*c^2*e^2*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

Rule 734

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 832

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m
- 1)*(a + b*x + c*x^2)^p*Simp[m*(c*d*f - a*e*g) + d*(2*c*f - b*g)*(p + 1) + (m*(c*e*f + c*d*g - b*e*g) + e*(p
+ 1)*(2*c*f - b*g))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 -
b*d*e + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
&&  !(IGtQ[m, 0] && EqQ[f, 0])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \sqrt{d+e x} \sqrt{a+b x+c x^2} \, dx &=\frac{2 (d+e x)^{3/2} \sqrt{a+b x+c x^2}}{5 e}-\frac{\int \frac{\sqrt{d+e x} (b d-2 a e+(2 c d-b e) x)}{\sqrt{a+b x+c x^2}} \, dx}{5 e}\\ &=-\frac{2 (2 c d-b e) \sqrt{d+e x} \sqrt{a+b x+c x^2}}{15 c e}+\frac{2 (d+e x)^{3/2} \sqrt{a+b x+c x^2}}{5 e}-\frac{2 \int \frac{\frac{1}{2} \left (b c d^2+b^2 d e-8 a c d e+a b e^2\right )+\left (c^2 d^2+b^2 e^2-c e (b d+3 a e)\right ) x}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{15 c e}\\ &=-\frac{2 (2 c d-b e) \sqrt{d+e x} \sqrt{a+b x+c x^2}}{15 c e}+\frac{2 (d+e x)^{3/2} \sqrt{a+b x+c x^2}}{5 e}+\frac{\left ((2 c d-b e) \left (c d^2-b d e+a e^2\right )\right ) \int \frac{1}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx}{15 c e^2}-\frac{\left (2 \left (c^2 d^2+b^2 e^2-c e (b d+3 a e)\right )\right ) \int \frac{\sqrt{d+e x}}{\sqrt{a+b x+c x^2}} \, dx}{15 c e^2}\\ &=-\frac{2 (2 c d-b e) \sqrt{d+e x} \sqrt{a+b x+c x^2}}{15 c e}+\frac{2 (d+e x)^{3/2} \sqrt{a+b x+c x^2}}{5 e}-\frac{\left (2 \sqrt{2} \sqrt{b^2-4 a c} \left (c^2 d^2+b^2 e^2-c e (b d+3 a e)\right ) \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{15 c^2 e^2 \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{a+b x+c x^2}}+\frac{\left (2 \sqrt{2} \sqrt{b^2-4 a c} (2 c d-b e) \left (c d^2-b d e+a e^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-b e-\sqrt{b^2-4 a c} e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 c d-b e-\sqrt{b^2-4 a c} e}}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{15 c^2 e^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ &=-\frac{2 (2 c d-b e) \sqrt{d+e x} \sqrt{a+b x+c x^2}}{15 c e}+\frac{2 (d+e x)^{3/2} \sqrt{a+b x+c x^2}}{5 e}-\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \left (c^2 d^2+b^2 e^2-c e (b d+3 a e)\right ) \sqrt{d+e x} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{15 c^2 e^2 \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{a+b x+c x^2}}+\frac{2 \sqrt{2} \sqrt{b^2-4 a c} (2 c d-b e) \left (c d^2-b d e+a e^2\right ) \sqrt{\frac{c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 c x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{15 c^2 e^2 \sqrt{d+e x} \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 10.7821, size = 697, normalized size = 1.36 $\frac{\frac{i (d+e x) \sqrt{1-\frac{2 \left (e (a e-b d)+c d^2\right )}{(d+e x) \left (\sqrt{e^2 \left (b^2-4 a c\right )}-b e+2 c d\right )}} \sqrt{\frac{4 \left (e (a e-b d)+c d^2\right )}{(d+e x) \left (\sqrt{e^2 \left (b^2-4 a c\right )}+b e-2 c d\right )}+2} \left (\left (c \left (a e^2 \left (3 \sqrt{e^2 \left (b^2-4 a c\right )}+8 c d\right )-c d^2 \sqrt{e^2 \left (b^2-4 a c\right )}\right )-b^2 e^2 \left (\sqrt{e^2 \left (b^2-4 a c\right )}+2 c d\right )+b c e \left (d \sqrt{e^2 \left (b^2-4 a c\right )}-4 a e^2\right )+b^3 e^3\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{2} \sqrt{\frac{a e^2-b d e+c d^2}{\sqrt{e^2 \left (b^2-4 a c\right )}+b e-2 c d}}}{\sqrt{d+e x}}\right ),-\frac{\sqrt{e^2 \left (b^2-4 a c\right )}+b e-2 c d}{\sqrt{e^2 \left (b^2-4 a c\right )}-b e+2 c d}\right )+\left (\sqrt{e^2 \left (b^2-4 a c\right )}-b e+2 c d\right ) \left (-c e (3 a e+b d)+b^2 e^2+c^2 d^2\right ) E\left (i \sinh ^{-1}\left (\frac{\sqrt{2} \sqrt{\frac{c d^2-b e d+a e^2}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}{\sqrt{d+e x}}\right )|-\frac{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}}\right )\right )}{\sqrt{\frac{e (a e-b d)+c d^2}{\sqrt{e^2 \left (b^2-4 a c\right )}+b e-2 c d}}}-\frac{4 e^2 (a+x (b+c x)) \left (-c e (3 a e+b d)+b^2 e^2+c^2 d^2\right )}{\sqrt{d+e x}}+2 c e^2 \sqrt{d+e x} (a+x (b+c x)) (b e+c (d+3 e x))}{15 c^2 e^3 \sqrt{a+x (b+c x)}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2],x]

[Out]

((-4*e^2*(c^2*d^2 + b^2*e^2 - c*e*(b*d + 3*a*e))*(a + x*(b + c*x)))/Sqrt[d + e*x] + 2*c*e^2*Sqrt[d + e*x]*(a +
x*(b + c*x))*(b*e + c*(d + 3*e*x)) + (I*(d + e*x)*Sqrt[1 - (2*(c*d^2 + e*(-(b*d) + a*e)))/((2*c*d - b*e + Sqr
t[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Sqrt[2 + (4*(c*d^2 + e*(-(b*d) + a*e)))/((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*
e^2])*(d + e*x))]*((2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(c^2*d^2 + b^2*e^2 - c*e*(b*d + 3*a*e))*EllipticE[I
*ArcSinh[(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt[d + e*x]], -((-
2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))] + (b^3*e^3 - b^2*e^2*(2*c*d +
Sqrt[(b^2 - 4*a*c)*e^2]) + b*c*e*(-4*a*e^2 + d*Sqrt[(b^2 - 4*a*c)*e^2]) + c*(-(c*d^2*Sqrt[(b^2 - 4*a*c)*e^2])
+ a*e^2*(8*c*d + 3*Sqrt[(b^2 - 4*a*c)*e^2])))*EllipticF[I*ArcSinh[(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c
*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt[d + e*x]], -((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e
+ Sqrt[(b^2 - 4*a*c)*e^2]))]))/Sqrt[(c*d^2 + e*(-(b*d) + a*e))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/(15*
c^2*e^3*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

Maple [B]  time = 0.349, size = 4356, normalized size = 8.5 \begin{align*} \text{output too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(1/2)*(c*x^2+b*x+a)^(1/2),x)

[Out]

1/15*(e*x+d)^(1/2)*(c*x^2+b*x+a)^(1/2)/c^2*(3*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(
-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*
c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*
a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b^3*d*e^3+12*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c
+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2
*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)
^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a^2*c*e^4
+4*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(
-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^
(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*
a*c+b^2)^(1/2)))^(1/2))*c^3*d^4+2*a*b*c*d*e^3+2*x*b*c^2*d^2*e^2+4*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*
e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b
^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c
*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*b^2*e^4-4*2^(1/2)*(-(
e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1
/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d
)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)
))^(1/2))*b^3*d*e^3-3*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1
/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))
^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d
)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*b^2*e^4-2*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(
1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/
(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),
(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/2)*a*c*d*e^3+3*2^(
1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c
+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*
(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^
2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/2)*b*c*d^2*e^2-12*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2
)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*
(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(
e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*b*c*d*e^3+8*2^(1/2)*(-(e*x+d)*c/(e*
(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*
(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a
*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*
b*c*d*e^3+6*x^4*c^3*e^4+10*x^2*b*c^2*d*e^3-12*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(
-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*
c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*
a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a^2*c*e^4+12*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c
+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2
*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)
^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*c^2*d^2
*e^2-8*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e
+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*Elliptic
E(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*
(-4*a*c+b^2)^(1/2)))^(1/2))*a*c^2*d^2*e^2+8*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b
-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+
b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*
c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b^2*c*d^2*e^2-3*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*
c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+
2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2
)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b^2*c*d^
2*e^2-2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+
e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF
(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(
-4*a*c+b^2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/2)*b^2*d*e^3-2*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)
)^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2
))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/
2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/2)*c^2*d^3*e-8*
2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*
a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/
2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c
+b^2)^(1/2)))^(1/2))*b*c^2*d^3*e+2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*
a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+
b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2
)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*(-4*a*c+b^2)^(1/2)*a*b*e^4+8*x^3*b*c^2*e^4+8*x^3*c^3*d*e
^3+6*x^2*a*c^2*e^4+2*x^2*b^2*c*e^4+2*x^2*c^3*d^2*e^2+2*x*a*b*c*e^4+8*x*a*c^2*d*e^3+2*x*b^2*c*d*e^3+2*a*c^2*d^2
*e^2)/(c*e*x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)/e^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c x^{2} + b x + a} \sqrt{e x + d}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)*(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{c x^{2} + b x + a} \sqrt{e x + d}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)*(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{d + e x} \sqrt{a + b x + c x^{2}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(1/2)*(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral(sqrt(d + e*x)*sqrt(a + b*x + c*x**2), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)*(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

Timed out