### 3.2420 $$\int \frac{1}{x \sqrt{4-12 x+9 x^2}} \, dx$$

Optimal. Leaf size=27 $-\frac{(2-3 x) \tanh ^{-1}(1-3 x)}{\sqrt{9 x^2-12 x+4}}$

[Out]

-(((2 - 3*x)*ArcTanh[1 - 3*x])/Sqrt[4 - 12*x + 9*x^2])

________________________________________________________________________________________

Rubi [B]  time = 0.0157698, antiderivative size = 55, normalized size of antiderivative = 2.04, number of steps used = 4, number of rules used = 4, integrand size = 18, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.222, Rules used = {646, 36, 29, 31} $\frac{(2-3 x) \log (x)}{2 \sqrt{9 x^2-12 x+4}}-\frac{(2-3 x) \log (2-3 x)}{2 \sqrt{9 x^2-12 x+4}}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/(x*Sqrt[4 - 12*x + 9*x^2]),x]

[Out]

-((2 - 3*x)*Log[2 - 3*x])/(2*Sqrt[4 - 12*x + 9*x^2]) + ((2 - 3*x)*Log[x])/(2*Sqrt[4 - 12*x + 9*x^2])

Rule 646

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{1}{x \sqrt{4-12 x+9 x^2}} \, dx &=\frac{(-6+9 x) \int \frac{1}{x (-6+9 x)} \, dx}{\sqrt{4-12 x+9 x^2}}\\ &=-\frac{(-6+9 x) \int \frac{1}{x} \, dx}{6 \sqrt{4-12 x+9 x^2}}+\frac{(3 (-6+9 x)) \int \frac{1}{-6+9 x} \, dx}{2 \sqrt{4-12 x+9 x^2}}\\ &=-\frac{(2-3 x) \log (2-3 x)}{2 \sqrt{4-12 x+9 x^2}}+\frac{(2-3 x) \log (x)}{2 \sqrt{4-12 x+9 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0158614, size = 31, normalized size = 1.15 $\frac{(3 x-2) (\log (2-3 x)-\log (x))}{2 \sqrt{(2-3 x)^2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/(x*Sqrt[4 - 12*x + 9*x^2]),x]

[Out]

((-2 + 3*x)*(Log[2 - 3*x] - Log[x]))/(2*Sqrt[(2 - 3*x)^2])

________________________________________________________________________________________

Maple [A]  time = 0.106, size = 28, normalized size = 1. \begin{align*} -{\frac{ \left ( -2+3\,x \right ) \left ( \ln \left ( x \right ) -\ln \left ( -2+3\,x \right ) \right ) }{2}{\frac{1}{\sqrt{ \left ( -2+3\,x \right ) ^{2}}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/((-2+3*x)^2)^(1/2),x)

[Out]

-1/2*(-2+3*x)*(ln(x)-ln(-2+3*x))/((-2+3*x)^2)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.41986, size = 32, normalized size = 1.19 \begin{align*} -\frac{1}{2} \, \left (-1\right )^{-12 \, x + 8} \log \left (-\frac{12 \, x}{{\left | x \right |}} + \frac{8}{{\left | x \right |}}\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/((-2+3*x)^2)^(1/2),x, algorithm="maxima")

[Out]

-1/2*(-1)^(-12*x + 8)*log(-12*x/abs(x) + 8/abs(x))

________________________________________________________________________________________

Fricas [A]  time = 2.08787, size = 42, normalized size = 1.56 \begin{align*} \frac{1}{2} \, \log \left (3 \, x - 2\right ) - \frac{1}{2} \, \log \left (x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/((-2+3*x)^2)^(1/2),x, algorithm="fricas")

[Out]

1/2*log(3*x - 2) - 1/2*log(x)

________________________________________________________________________________________

Sympy [A]  time = 0.118993, size = 12, normalized size = 0.44 \begin{align*} - \frac{\log{\left (x \right )}}{2} + \frac{\log{\left (x - \frac{2}{3} \right )}}{2} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/((-2+3*x)**2)**(1/2),x)

[Out]

-log(x)/2 + log(x - 2/3)/2

________________________________________________________________________________________

Giac [A]  time = 1.12745, size = 28, normalized size = 1.04 \begin{align*} \frac{1}{2} \,{\left (\log \left ({\left | 3 \, x - 2 \right |}\right ) - \log \left ({\left | x \right |}\right )\right )} \mathrm{sgn}\left (3 \, x - 2\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/((-2+3*x)^2)^(1/2),x, algorithm="giac")

[Out]

1/2*(log(abs(3*x - 2)) - log(abs(x)))*sgn(3*x - 2)